14 resultados para AQUIFERS

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Groundwater with underground residence times between days and a few years have been investigated over more than 20 years from 487 remote sites located in different aquifer types in the Alpine belt. Analysis of the data reveals that groundwaters evolved in crystalline, evaporite, carbonate, molasse, and flysch aquifers can be clearly distinguished based on their major and trace element composition and degree of mineralisation. A further subdivision can be made even within one aquifer type based on the trace element compositions, which are characteristic for the lithologic environment. Major and trace element concentrations can be quantitatively described by interaction of the groundwater with the aquifer- specific mineralogy along the flow path. Because all investigated sites show minimal anthropogenic influences, the observed concentration ranges represent the natural background concentrations and can thus serve as a “geo-reference” for recent groundwaters from these five aquifer types. This “geo-reference” is particularly useful for the identification of groundwater contamination. It further shows that drinking water standards can be grossly exceeded for critical elements by purely natural processes

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Karst aquifers are known for their wide distribution of water transfer velocities. From this observation, a multiple geochemical tracer approach seems to be particularly well suited to provide a significant assessment of groundwater flows, but the choice of adapted tracers is essential. In this study, several common tracers in karst aquifers such as physicochemical parameters, major ions, stable isotopes, and d13C to more specific tracers such as dating tracers – 14C, 3H, 3H–3He, CFC-12, SF6 and 85Kr, and 39Ar – were used, in a fractured karstic carbonated aquifer located in Burgundy (France). The information carried by each tracer and the best sampling strategy are compared on the basis of geochemical monitoring done during several recharge events and over longer time periods (months to years). This study’s results demonstrate that at the seasonal and recharge event time scale, the variability of concentrations is low for most tracers due to the broad spectrum of groundwater mixings. The tracers used traditionally for the study of karst aquifers, i.e., physicochemical parameters and major ions, efficiently describe hydrological processes such as the direct and differed recharge, but require being monitored at short time steps during recharge events to be maximized. From stable isotopes, tritium, and Cl� contents, the proportion of the fast direct recharge by the largest porosity was estimated using a binary mixing model. The use of tracers such as CFC-12, SF6, and 85Kr in karst aquifers provides additional information, notably an estimation of apparent age, but they require good preliminary knowledge of the karst system to interpret the results suitably. The CFC-12 and SF6 methods efficiently determine the apparent age of baseflow, but it is preferable to sample the groundwater during the recharge event. Furthermore, these methods are based on different assumptions such as regional enrichment in atmospheric SF6, excess air, and flow models among others. 85Kr and 39Ar concentrations can potentially provide a more direct estimation of groundwater residence time. Conversely, the 3H–3He method is inefficient in the karst aquifer for dating due to 3He degassing.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Located in the northeastern region of Italy, the Venetian Plain (VP) is a sedimentary basin containing an extensively exploited groundwater system. The northern part is characterised by a large undifferentiated phreatic aquifer constituted by coarse grain alluvial deposits and recharged by local rainfalls and discharges from the rivers Brenta and Piave. The southern plain is characterised by a series of aquitards and sandy aquifers forming a well-defined artesian multi-aquifer system. In order to determine origins, transit times and mixing proportions of different components in groundwater (GW), a multi tracer study (H, He/He, C, CFC, SF, Kr, Ar, Sr/Sr, O, H, cations, and anions) has been carried out in VP between the rivers Brenta and Piave. The geochemical pattern of GW allows a distinction of the different water origins in the system, in particular based on View the MathML source HCO3-,SO42-,Ca/Mg,NO3-, O, H. A radiogenic Sr signature clearly marks GW originated from the Brenta and Tertiary catchments. End-member analysis and geochemical modelling highlight the existence of a mixing process involving waters recharged from the Brenta and Piave rivers, from the phreatic aquifer and from another GW reservoirs characterised by very low mineralization. Noble gas excesses in respect to atmospheric equilibrium occur in all samples, particularly in the deeper aquifers of the Piave river, but also in phreatic water of the undifferentiated aquifers. He–H ages in the phreatic aquifer and in the shallower level of the multi-aquifer system indicate recharge times in the years 1970–2008. The progression of H–He ages with the distance from the recharge areas together with initial tritium concentration (H + Hetrit) imply an infiltration rate of about 1 km/y and the absence of older components in these GW. SF and Kr data corroborate these conclusions. H − He ages in the deeper artesian aquifers suggest a dilution process with older, tritium free waters. C Fontes–Garnier model ages of the old GW components range from 1 to 12 ka, yielding an apparent GW velocity of about 1–10 m/y. Increase of radiogenic He follows the progression of C ages. Ar, radiogenic He and C tracers yield model-dependent age-ranges in overall good agreement once diffusion of C from aquitards, GW dispersion, lithogenic Ar production, and He production-rate heterogeneities are taken into account. The rate of radiogenic He increase with time, deduced by comparison with C model ages, is however very low compared to other studies. Comparison with C and C data obtained 40 years ago on the same aquifer system shows that exploitation of GW caused a significant loss of the old groundwater reservoir during this time.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Argillaceous formations generally act as aquitards because of their low hydraulic conductivities. This property, together with the large retention capacity of clays for cationic contaminants, has brought argillaceous formations into focus as potential host rocks for the geological disposal of radioactive and other waste. In several countries, programmes are under way to characterise the detailed transport properties of such formations at depth. In this context, the interpretation of profiles of natural tracers in pore waters across the formations can give valuable information about the large-scale and long-term transport behaviour of these formations. Here, tracer-profile data, obtained by various methods of pore-water extraction for nine sites in central Europe, are compiled. Data at each site comprise some or all of the conservative tracers: anions (Cl(-), Br(-)), water isotopes (delta(18)O, delta(2)H) and noble gases (mainly He). Based on a careful evaluation of the palaeo-hydrogeological evolution at each site, model scenarios are derived for initial and boundary pore-water compositions and an attempt is made to numerically reproduce the observed tracer distributions in a consistent way for all tracers and sites, using transport parameters derived from laboratory or in situ tests. The comprehensive results from this project have been reported in Mazurek et al. (2009). Here the results for three sites are presented in detail, but the conclusions are based on model interpretations of the entire data set. In essentially all cases, the shapes of the profiles can be explained by diffusion acting as the dominant transport process over periods of several thousands to several millions of years and at the length scales of the profiles. Transport by advection has a negligible influence on the observed profiles at most sites, as can be shown by estimating the maximum advection velocities that still give acceptable fits of the model with the data. The advantages and disadvantages of different conservative tracers are also assessed. The anion Cl(-) is well suited as a natural tracer in aquitards, because its concentration varies considerably in environmental waters. It can easily be measured, although the uncertainty regarding the fraction of the pore space that is accessible to anions in clays remains an issue. The stable water isotopes are also well suited, but they are more difficult to measure and their values generally exhibit a smaller relative range of variation. Chlorine isotopes (delta(37)Cl) and He are more difficult to interpret because initial and boundary conditions cannot easily be constrained by independent evidence. It is also shown that the existence of perturbing events such as the activation of aquifers due to uplift and erosion, leading to relatively sharp changes of boundary conditions, can be considered as a pre-requisite to obtain well-interpretable tracer signatures. On the other hand, gradual changes of boundary conditions are more difficult to parameterise and so may preclude a clear interpretation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Continental evaporation is a significant and dynamic flux within the atmospheric water budget, but few methods provide robust observational constraints on the large-scale hydroclimatological and hydroecological impacts of this ‘recycled-water' flux. We demonstrate a geospatial analysis that provides such information, using stable isotope data to map the distribution of recycled water in shallow aquifers downwind from Lake Michigan. The δ2H and δ18O values of groundwater in the study region decrease from south to north, as expected based on meridional gradients in climate and precipitation isotope ratios. In contrast, deuterium excess (d = δ2H − 8 × δ18O) values exhibit a significant zonal gradient and finer-scale spatially patterned variation. Local d maxima occur in the northwest and southwest corners of the Lower Peninsula of Michigan, where ‘lake-effect' precipitation events are abundant. We apply a published model that describes the effect of recycling from lakes on atmospheric vapor d values to estimate that up to 32% of recharge into individual aquifers may be derived from recycled Lake Michigan water. Applying the model to geostatistical surfaces representing mean d values, we estimate that between 10% and 18% of the vapor evaporated from Lake Michigan is re-precipitated within downwind areas of the Lake Michigan drainage basin. Our approach provides previously unavailable observational constraints on regional land-atmosphere water fluxes in the Great Lakes Basin and elucidates patterns in recycled-water fluxes that may influence the biogeography of the region. As new instruments and networks facilitate enhanced spatial monitoring of environmental water isotopes, similar analyses can be widely applied to calibrate and validate water cycle models and improve projections of regional hydroecological change involving the coupled lake-atmosphere-land system. Read More: http://www.esajournals.org/doi/abs/10.1890/ES12-00062.1

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Abstract. Lakes Prespa and Ohrid, in the Balkan region, are considered to be amongst the oldest lakes in Europe. Both lakes are hydraulically connected via karst aquifers. From Lake Ohrid, several sediment cores up to 15m long have been studied over the last few years. Here, we document the first long sediment record from nearby Lake Prespa to clarify the influence of Lake Prespa on Lake Ohrid and the environmental history of the region. Radiocarbon dating and dated tephra layers provide robust age control and indicate that the 10.5m long sediment record from Lake Prespa reaches back to 48 ka. Glacial sedimentation is characterized by low organic matter content and absence of carbonates in the sediments, which indicate oligotrophic conditions in both lakes. Holocene sedimentation is characterized by particularly high carbonate content in Lake Ohrid and by particularly high organic matter content in Lake Prespa, which indicates a shift towards more mesotrophic conditions in the latter. Long-term environmental change and short-term events, such as related to the Heinrich events during the Pleistocene or the 8.2 ka cooling event during the Holocene, are well recorded in both lakes, but are only evident in certain proxies. The comparison of the sediment cores from both lakes indicates that environmental change affects particularly the trophic state of Lake Prespa due to its lower volume and water depth.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The northern section of the Bohemian Cretaceous Basin has been the site of intensive U exploitation with harmful impacts on groundwater quality. The understanding of groundwater flow and age distribution is crucial for the prediction of the future dispersion and impact of the contamination. State of the art tracer methods (3H, 3He, 4He, 85Kr, 39Ar and 14C) were, therefore, used to obtain insights to ageing and mixing processes of groundwater along a north–south flow line in the centre of the two most important aquifers of Cenomanian and middle Turonian age. Dating of groundwater is particularly complex in this area as: (i) groundwater in the Cenomanian aquifer is locally affected by fluxes of geogenic and biogenic gases (e.g. CO2, CH4, He) and by fossil brines in basement rocks rich in Cl and SO4; (ii) a thick unsaturated zone overlays the Turonian aquifer; (iii) a periglacial climate and permafrost conditions prevailed during the Last Glacial Maximum (LGM), and iv) the wells are mostly screened over large depth intervals. Large disagreements in 85Kr and 3H/3He ages indicate that processes other than ageing have affected the tracer data in the Turonian aquifer. Mixing with older waters (>50 a) was confirmed by 39Ar activities. An inverse modelling approach, which included time lags for tracer transport throughout the unsaturated zone and degassing of 3He, was used to estimate the age of groundwater. Best fits between model and field results were obtained for mean residence times varying from modern up to a few hundred years. The presence of modern water in this aquifer is correlated with the occurrence of elevated pollution (e.g. nitrates). An increase of reactive geochemical indicators (e.g. Na) and radiogenic 4He, and a decrease in 14C along the flow direction confirmed groundwater ageing in the deeper confined Cenomanian aquifer. Radiocarbon ages varied from a few hundred years to more than 20 ka. Initial 14C activity for radiocarbon dating was calibrated by means of 39Ar measurements. The 14C age of a sample recharged during the LGM was further confirmed by depleted stable isotope signatures and near freezing point noble gas temperature. Radiogenic 4He accumulated in groundwater with concentrations increasing linearly with 14C ages. This enabled the use of 4He to validate the dating range of 14C and extend it to other parts of this aquifer. In the proximity of faults, 39Ar in excess of modern concentrations and 14C dead CO2 sources, elevated 3He/4He ratios and volcanic activity in Oligocene to Quaternary demonstrate the influence of gas of deeper origin and impeded the application of 4He, 39Ar and 14C for groundwater dating.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The Lasail mining area (Sultanate of Oman) was contaminated by acid mine drainage during the exploitation and processing of local and imported copper ore and the subsequent deposition of sulphide-bearing waste material into an unsealed tailings dump. In this arid environment, the use of seawater in the initial stages of ore processing caused saline contamination of the fresh groundwater downstream of the tailings dump. After detection of the contamination in the 1980s, different source-controlled remediation activities were conducted including a seepage water collection system and, in 2005, surface sealing of the tailings dump using an HDPE-liner to prevent further infiltration of meteoric water. We have been assessing the benefits of the remediation actions undertaken so far. We present chemical and isotopic (δ18O, δ 2H, 3H) groundwater data from a long-term survey (8–16 years) of the Wadi Suq aquifer along a 28 km profile from the tailings dump to the Gulf of Oman. Over this period, most metal concentrations in the Wadi Suq groundwater decreased below detection limits. In addition, in the first boreholes downstream of the tailings pond, the salinity contamination has decreased by 30 % since 2005. This decrease appears to be related to the surface coverage of the tailings pond, which reduces flushing of the tailings by the sporadic, but commonly heavy, precipitation events. Despite generally low metal concentrations and the decreased salinity, groundwater quality still does not meet the WHO drinking water guidelines in more than 90 % of the Wadi Suq aquifer area. The observations show that under arid conditions, use of seawater for ore processing or any other industrial activity has the potential to contaminate aquifers for decades.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A regional hydrogeochemical model was developed to evaluate the geochemical evolution of different groundwaters in an alluvial aquifer system in the Interior of Oman. In combination with environmental isotopes the model is able to extract qualitative and quantitative information about recharge, groundwater flow paths and hydraulic connections between different aquifers. The main source of water to the alluvial aquifer along the flow paths ofWadi Abyadh andWadi M’uaydin in the piedmont is groundwater from the high-altitude areas of the Jabal Akhdar and local infiltration along the wadi channels. In contrast, the piedmont alluvial aquifer alongWadi Halfayn is primarily replenished by lateral recharge from the ophiolite foothills to the east besides smaller contributions from the Jabal Akhdar and local infiltration. Further down gradient in the Southern Alluvial Plain aquifer a significant source of recharge is direct infiltration of rain and surface runoff, originating from a moisture source that approaches Oman from the south. The model shows that the main geochemical evolution of the alluvial groundwaters occurs along the flow path from the piedmont to the Southern Alluvial Plain, where dedolomitization is responsible for the observed changes in the chemical and carbon isotope composition in these waters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Several important fundamental and applied problems require a quantification of slow rates of groundwater flow. To resolve these problems helium appears to be a promising tracer. In this contribution we discuss a new approach, which gives the helium inventory in a rock – pore water system by using the relevant mineral record, i.e., without extraction and investigation of the porewater samples. Some U- and Th-poor minerals such as quartz (quartz separates from Permo-Carboniferous Formation, sandstone–shale interlayering, Molasses Basin, Northern Switzerland, hereafter PCF, are used in this study) contain excessive helium having migrated into their internal helium-accessible volume (HAV) from the surrounding porewater [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. These volumes are estimated by using helium as a nano-size penetrating tool, i.e., by saturation of the minerals with helium under controlled pressure–temperature conditions and subsequent measurements of the helium-saturated concentrations. In the quartz separates HAV/total volume ratios vary from 0.017% to 0.16%; along with the measured initial (unsaturated) He concentration the HAV gives the internal helium pressure, the mean value obtained for 7 samples (25 sample aliquots) is P=0.45F0.15 atm (1 r). The product of helium pressure and solubility (7.35_10_3 cc STP He/cc H2O for the temperature and salinity of PCF aquifers reported in [F.J. Pearson, W. Balderer, H.H. Loosli, B.E. Lehmann, A. Matter, T. Peters, H. Schmassmann, A. Gautschi, Applied Isotope Hydrogeology–A Case Study in Northern Switzerland, Elsevier Amsterdam, 1991, 439 pp.]) is the mineral-derived He concentration in the respective porewater, CPW=0.0035F0.0017 cc He/cc H2O. This value is in full accord with measured He concentrations in PCF aquifers, CPCF, varying from 0.0045 to 0.0016 cc He/cc H2O. This agreement validates the proposed approach and also shows that the mineral–porewater helium–concentration equilibrium has been established. Indeed, estimates of the He-migration rates through our quartz samples show that in ~6000 years the internal pressure should equilibrate with He-concentration in related porewater of PCF, and this time interval is short compared to independent estimates [I.N. Tolstikhin, B.E. Lehmann, H.H. Loosli, A. Gautschi, Helium and argon isotopes in rocks, minerals and related groundwaters: a case study in Northern Switzerland, Geochim. Cosmochim. Acta 60 (1996) 1497–1514]. The helium inventory in the rock–porewater assemblage shows that helium abundance in pore waters is indeed important. In shale samples (with ~15% porosity) porewaters contain more helium than the host minerals altogether. Porewater heliumconcentration profiles, available from the mineral record, along with helium production rates are input parameters allowing model(s) of helium migration through a hydrological structure to be developed. Quite high helium concentrations in PCF porewaters imply slow removal mechanisms, which will be discussed elsewhere.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Radiogenic He is produced by the decay of uranium and thorium in the Earth’s mantle and crust. From here, it is degassed to the atmosphere and eventually escapes to space. Assuming that all of the 4He produced is degassed, about 70% of the total He degassed from Earth comes from the continental crust. However, the outgoing flux of crustal He has not been directly measured at the Earth’s surface and the migration pathways are poorly understood. Here we present measurements of helium isotopes and the long-lived cosmogenic radio-isotope Kr in the deep, continental-scale Guarani aquifer in Brazil and show that crustal He reaches the atmosphere primarily by the surficial discharge of deep groundwater. We estimate that He in Guarani groundwater discharge accounts for about 20% of the assumed global flux from continental crust, and that other large aquifers may account for about 33%. Old groundwater ages suggest that He in the Guarani aquifer accumulates over half- to one-millionyear timescales. We conclude that He degassing from the continents is regulated by groundwater discharge, rather than episodic tectonic events, and suggest that the assumed steady state between crustal production and degassing of He, and its resulting atmospheric residence time, should be re-examined.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A time-lapse pressure tomography inversion approach is applied to characterize the CO2 plume development in a virtual deep saline aquifer. Deep CO2 injection leads to flow properties of the mixed-phase, which vary depending on the CO2 saturation. Analogous to the crossed ray paths of a seismic tomographic experiment, pressure tomography creates streamline patterns by injecting brine prior to CO2 injection or by injecting small amounts of CO2 into the two-phase (brine and CO2) system at different depths. In a first step, the introduced pressure responses at observation locations are utilized for a computationally rapid and efficient eikonal equation based inversion to reconstruct the heterogeneity of the subsurface with diffusivity (D) tomograms. Information about the plume shape can be derived by comparing D-tomograms of the aquifer at different times. In a second step, the aquifer is subdivided into two zones of constant values of hydraulic conductivity (K) and specific storage (Ss) through a clustering approach. For the CO2 plume, mixed-phase K and Ss values are estimated by minimizing the difference between calculated and “true” pressure responses using a single-phase flow simulator to reduce the computing complexity. Finally, the estimated flow property is converted to gas saturation by a single-phase proxy, which represents an integrated value of the plume. This novel approach is tested first with a doublet well configuration, and it reveals a great potential of pressure tomography based concepts for characterizing and monitoring deep aquifers, as well as the evolution of a CO2 plume. Still, field-testing will be required for better assessing the applicability of this approach.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Twenty-five public supply wells throughout the hydrogeologically diverse region of Scania, southern Sweden are subjected to environmental tracer analysis (³H–³He,⁴He, CFCs, SF₆ and for one well only also ⁸⁵Kr and ³⁹Ar) to study well and aquifer vulnerability and evaluate possibilities of groundwater age distribution assessment. We find CFC and SF₆ concentrations well above solubility equilibrium with modern atmosphere, indicating local contamination, as well as indications of CFC degradation. The tracer-specific complications considerably constrain possibilities for sound quantitative regional ground- water age distribution assessment and demonstrate the importance of initial qualitative assessment of tracer-specific reliability, as well a need for additional, complementary tracers (e.g. ⁸⁵Kr,³⁹Ar and potentially also ¹⁴C). Lumped parameter modelling yields credible age distribution assessments for representative wells in four type aquifers. Pollution vulnerability of the aquifer types was based on the selected LPM models and qualitative age characterisation. Most vulnerable are unconfined dual porosity and fractured bedrock aquifers, due to a large component of very young groundwater. Unconfined sedimentary aquifers are vulnerable due to young groundwater and a small pre-modern component. Less vulnerable are semi-confined sedimentary or dual-porosity aquifers, due to older age of the modern component and a larger pre-modern component. Confined aquifers appear least vulnerable, due an entirely pre-modern groundwater age distribution (recharged before 1963). Tracer complications aside, environmental tracer analyses and lumped parameter modelling aid in vulnerability assessment and protection of regional groundwater resources.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Subsurface fluid flow can be affected by earthquakes; increased spring activity, mud vol- cano eruptions, groundwater fluctuations, changes in geyser frequency, and other forms of altered subsurface fluid flow have been documented during, after, or even prior to seismic shaking. Recently discovered giant pockmarks on the bottom of Lake Neuchâtel, Switzerland, are the lake-floor expression of subsurface fluid flow. They discharge groundwater from the Jura Mountains karstic aquifers and experience episodically increased subsurface fluid flow documented by subsurface sediment mobilization deposits at the levees of the pockmarks. In this study, we present the spatio-temporal distribution of event deposits from these phases of sediment expulsion and of multiple time-correlative mass-transport deposits. We report five striking instances of concurrent multiple subsurface sediment deposits and multiple mass- transport deposits since late glacial times, for which we propose past earthquakes as a trigger. Comparison of this new event catalogue with historic earthquakes and other independent paleoseismic records suggests that initiation of sediment expulsion requires a minimum mac- roseismic intensity of VII. Thus, our study presents for the first time sedimentary deposits resulting from increased subsurface fluid flow as a paleoseismic proxy.