4 resultados para APICOMPLEXA
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Besnoitia besnoiti is an apicomplexan parasite responsible for bovine besnoitiosis, a disease with a high prevalence in tropical and subtropical regions and re-emerging in Europe. Despite the great economical losses associated with besnoitiosis, this disease has been underestimated and poorly studied, and neither an effective therapy nor an efficacious vaccine is available. Protein disulfide isomerase (PDI) is an essential enzyme for the acquisition of the correct three-dimensional structure of proteins. Current evidence suggests that in Neosporacaninum and Toxoplasmagondii, which are closely related to B. besnoiti, PDI play an important role in host cell invasion, is a relevant target for the host immune response, and represents a promising drug target and/or vaccine candidate. In this work, we present the nucleotide sequence of the B. besnoiti PDI gene. BbPDI belongs to the thioredoxin-like superfamily (cluster 00388) and is included in the PDI_a family (cluster defined cd02961) and the PDI_a_PDI_a'_c subfamily (cd02995). A 3D theoretical model was built by comparative homology using Swiss-Model server, using as a template the crystallographic deduced model of Tapasin-ERp57 (PDB code 3F8U chain C). Analysis of the phylogenetic tree for PDI within the phylum apicomplexa reinforces the close relationship among B. besnoiti, N. caninum and T. gondii. When subjected to a PDI-assay based on the polymerisation of reduced insulin, recombinant BbPDI expressed in E. coli exhibited enzymatic activity, which was inhibited by bacitracin. Antiserum directed against recombinant BbPDI reacted with PDI in Western blots and by immunofluorescence with B. besnoiti tachyzoites and bradyzoites.
Resumo:
Besnoitia besnoiti, an obligate intracellular protozoan parasite belonging to the phylum apicomplexa, is the causative agent of bovine besnoitiosis. Besnoitiosis is responsible for significant losses in the cattle industry of Africa and Mediterranean countries due to the high morbidity rate, abortion and infertility in males. The acute stage of disease is associated with the proliferative forms (tachyzoites) and is characterized by fever, whimpery, general weakness and swelling of the superficial lymph nodes. During the following chronic stage, a huge number of cysts are formed mainly in the subcutaneous tissues. This process is non-reversible, and chronic besnoitiosis is characterized by hyper-sclerodermia, hyperkeratosis, alopecia and, in bulls, atrophy, sclerosis and focal necrosis that cause irreversible lesions in the testis. In this paper we report on the identification of large cysts in the skin of a cow and a bull in Portugal, which presented loss of hair and enlargement and pachydermis all over the body. The observation of a two-layered cyst wall within the host cell, the encapsulation of the host cell by a large outer cyst wall, and the subcutaneous localization of the cysts within the host, were characteristic for B. besnoiti. The parasites were isolated from the infected animals and successfully propagated in Vero cells without prior passages in laboratory animals. Morphological characterization of B. besnoiti tachyzoites and the amplification of the 149 bp segment from the internal transcribed spacer 1 (ITS1), aided with specific primers, confirmed the identification of B. besnoiti.
Resumo:
Plasmodium and Theileria parasites are obligate intracellular protozoa of the phylum Apicomplexa. Theileria infection of bovine leukocytes induces transformation of host cells and infected leukocytes can be kept indefinitely in culture. Theileria-dependent host cell transformation has been the subject of interest for many years and the molecular basis of this unique phenomenon is quite well understood. The equivalent life cycle stage of Plasmodium is the infection of mammalian hepatocytes, where parasites reside for 2-7 days depending on the species. Some of the molecular details of parasite-host interactions in P. berghei-infected hepatocytes have emerged only very recently. Similar to what has been shown for Theileria-infected leukocytes these data suggest that malaria parasites within hepatocytes also protect their host cell from programmed cell death. However, the strategies employed to inhibit host cell apoptotic pathways appear to be different to those used by Theileria. This review discusses similarities and differences at the molecular level of Plasmodium- and Theileria-induced regulation of the host cell survival machinery.