62 resultados para ANTI-AQUAPORIN-4 ANTIBODY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Variability of anti-PF4/heparin antibody results obtained by the rapid testing system ID-H/PF4-PaGIA
Resumo:
BACKGROUND: Recent studies have shown that a low clinical pretest probability may be adequate for excluding heparin-induced thrombocytopenia. However, for patients with intermediate or high pretest probability, laboratory testing is essential for confirming or refuting the diagnosis. Rapid assessment of anti-PF4/heparin-antibodies may assist clinical decision-making. OBJECTIVES: To evaluate the performance of rapid ID-H/PF4-PaGIA. In particular, we verified reproducibility of results between plasma and serum specimens, between fresh and frozen samples, and between different ID-H/PF4-polymer lots (polystyrene beads coated with heparin/PF4-complexes). PATIENTS/METHODS: The samples studied were 1376 plasma and 914 corresponding serum samples from patients investigated for suspected heparin-induced thrombocytopenia between January 2000 and October 2008. Anti-PF4/heparin-antibodies were assessed by ID-H/PF4-PaGIA, commercially available ELISAs and heparin-induced platelet aggregation test. RESULTS: Among 914 paired plasma/serum samples we noted discordant results (negative vs. low-titre positive) in nine instances (1%; 95%CI, 0.4-1.6%). Overall, agreement between titres assessed in plasma vs. serum was highly significant (Spearman correlation coefficient, 0.975; P < 0.0001). Forty-seven samples tested both fresh and after freezing/thawing showed a good agreement, with one discordant positive/negative result (Spearman correlation coefficient, 0.970; P < 0.0001). Among 1376 plasma samples we noted a strikingly variable incidence of false negative results (none - 82%; 95%CI, 66-98%), depending on the employed ID-H/PF4-polymer lot. Faulty lots can be recognized by titrating commercial positive controls and stored samples of HIT-patients. CONCLUSION: Laboratories performing the assay should implement stringent internal quality controls in order to recognize potentially faulty ID-H/PF4-polymer lots, thus avoiding false negative results.
Resumo:
Eosinophilic oesophagitis (EoO) is a clinicopathological condition defined by proton pump inhibitor-refractory oesophageal symptoms combined with oesophageal eosinophilia. The pharmacodynamic effect of mepolizumab (a humanised anti-interleukin-5 monoclonal antibody) in EoO was evaluated.
Resumo:
Inhibiting the alpha(4) subunit of the integrin heterodimers alpha(4)beta(1) and alpha(4)beta(7) with the monoclonal antibody natalizumab is an effective treatment for multiple sclerosis (MS). However, the pharmacological action of natalizumab is not understood conclusively. Previous studies suggested that natalizumab inhibits activation, proliferation, or extravasation of inflammatory cells. To specify which mechanisms, cell types, and alpha(4) heterodimers are affected by the antibody treatment, we studied MS-like experimental autoimmune encephalomyelitis (EAE) in mice lacking the beta(1)-integrin gene either in all hematopoietic cells or selectively in T lymphocytes. Our results show that T cells critically rely on beta(1) integrins to accumulate in the central nervous system (CNS) during EAE, whereas CNS infiltration of beta(1)-deficient myeloid cells remains unaffected, suggesting that T cells are the main target of anti-alpha(4)-antibody blockade. We demonstrate that beta(1)-integrin expression on encephalitogenic T cells is critical for EAE development, and we therefore exclude alpha(4)beta(7) as a target integrin of the antibody treatment. T cells lacking beta(1) integrin are unable to firmly adhere to CNS endothelium in vivo, whereas their priming and expansion remain unaffected. Collectively, these results suggest that the primary action of natalizumab is interference with T cell extravasation via inhibition of alpha(4)beta(1) integrins.
Resumo:
OBJECTIVE To describe the clinical spectrum, diagnostic evaluation, current management, and neurologic outcome of pediatric antibody-associated inflammatory brain diseases (AB-associated IBrainD). METHODS We performed a single-center retrospective cohort study of consecutive patients aged ≤18 years diagnosed with an AB-associated IBrainD at The Hospital for Sick Children, Toronto, Ontario, Canada, between January 2005 and June 2013. Standardized clinical data, laboratory test results, neuroimaging features, and treatment regimens were captured. RESULTS Of 169 children (93 female, 55%) diagnosed with an IBrainD, 16 (10%) had an AB-associated IBrainD. Median age at presentation was 13.3 years (range 3.1-17.9); 11 (69%) were female. Nine patients (56%) had anti-NMDA receptor encephalitis, 4 (25%) had aquaporin-4 autoimmunity, 2 (13%) had Hashimoto encephalitis, and 1 (6%) had anti-glutamic acid decarboxylase 65 (GAD65) encephalitis. The key presenting features in children with anti-NMDA receptor encephalitis, Hashimoto encephalopathy, and anti-GAD65 encephalitis included encephalopathy, behavioral symptoms, and seizures; patients with aquaporin-4 autoimmunity showed characteristic focal neurologic deficits. Six patients (38%) required intensive care unit admission at presentation. Median time from symptom onset to diagnosis was 55 days (range 6-358). All but 1 patient received immunosuppressive therapy. One child with anti-NMDA receptor encephalitis died due to multiorgan failure. At last follow-up, after a median follow-up time of 1.7 years (range 0.8-3.7), 27% of the children had function-limiting neurologic sequelae. CONCLUSIONS Children with AB-associated IBrainD represent an increasing subgroup among IBrainD; 1 in 4 children has function-limiting residual neurologic deficits. Awareness of the different clinical patterns is important in order to facilitate timely diagnosis and initiate immunosuppressive treatment.
Resumo:
Zymosan-induced peritonitis is associated with an increased production of reactive nitrogen oxides that may contribute to the often-observed failure of multiple organ systems in this model of acute inflammation. Quantitative biochemical evidence is provided for a marked 13-fold increase in protein-bound 3-nitrotyrosine (NTyr), a biomarker of reactive nitrogen oxides, in liver tissue of zymosan-treated rats. In order to investigate the localization of NTyr in this affected tissue, a monoclonal antibody, designated 39B6, was raised against 3-(4-hydroxy-3-nitrophenylacetamido) propionic acid-bovine serum albumin conjugate and its performance characterized. 39B6 was judged by competition ELISA to be approximately 2 orders of magnitude more sensitive than a commercial anti-NTyr monoclonal antibody. Binding characteristics of 39B6 were similar, but not identical, to that of a commercial affinity-purified polyclonal antibody in ELISA and immunohistochemical analyses. Western blot experiments revealed high specificity of 39B6 against NTyr and increased immunoreactivity of specific proteins from liver tissue homogenates of zymosan-treated rats. Immunohistochemical analysis of liver sections indicated a marked zymosan-induced increase in immunofluorescent staining, which was particularly intense in or adjacent to nonparenchymal cells, but not in the parenchymal cells of this tissue. Quantitative analysis of fractions enriched in these cell populations corroborated the immunofluorescent data, although the relative amounts detected in response to zymosan treatment was greatly reduced compared to whole liver tissue. These results demonstrate the high specificity of the newly developed antibody and its usefulness in Western blot and immunohistochemical analysis for NTyr, confirm the presence of NTyr by complementary methods, and suggest the possible involvement of reactive nitrogen oxides in hepatic vascular dysfunction.
Resumo:
Clinical immunity to Plasmodium falciparum malaria develops after repeated exposure to the parasite. At least 2 P. falciparum variant antigens encoded by multicopy gene families (var and rif) are targets of this adaptive antibody-mediated immunity. A third multigene family of variant antigens comprises the stevor genes. Here, 4 different stevor sequences were selected for cloning and expression in Escherichia coli and His6-tagged fusion proteins were used for assessing the development of immunity. In a cross-sectional analysis of clinically immune adults living in a malaria endemic area in Ghana, high levels of anti-STEVOR IgG antibody titres were determined in ELISA. A cross-sectional study of 90 nine-month-old Ghanaian infants using 1 recombinant STEVOR showed that the antibody responses correlated positively with the number of parasitaemia episodes. In a longitudinal investigation of 17 immunologically naïve 9-month-old infants, 3 different patterns of anti-STEVOR antibody responses could be distinguished (high, transient and low). Children with high anti-STEVOR-antibody levels exhibited an elevated risk for developing parasitaemia episodes. Overall, a protective effect could not be attributed to antibodies against the STEVOR proteins chosen for the study presented here.
Resumo:
BACKGROUND Timing is critical for efficient hepatitis A vaccination in high endemic areas as high levels of maternal IgG antibodies against the hepatitis A virus (HAV) present in the first year of life may impede the vaccine response. OBJECTIVES To describe the kinetics of the decline of anti-HAV maternal antibodies, and to estimate the time of complete loss of maternal antibodies in infants in León, Nicaragua, a region in which almost all mothers are anti-HAV seropositive. METHODS We collected cord blood samples from 99 healthy newborns together with 49 corresponding maternal blood samples, as well as further blood samples at 2 and 7 months of age. Anti-HAV IgG antibody levels were measured by enzyme immunoassay (EIA). We predicted the time when antibodies would fall below 10 mIU/ml, the presumed lowest level of seroprotection. RESULTS Seroprevalence was 100% at birth (GMC 8392 mIU/ml); maternal and cord blood antibody concentrations were similar. The maternal antibody levels of the infants decreased exponentially with age and the half-life of the maternal antibody was estimated to be 40 days. The relationship between the antibody concentration at birth and time until full waning was described as: critical age (months)=3.355+1.969 × log(10)(Ab-level at birth). The survival model estimated that loss of passive immunity will have occurred in 95% of infants by the age of 13.2 months. CONCLUSIONS Complete waning of maternal anti-HAV antibodies may take until early in the second year of life. The here-derived formula relating maternal or cord blood antibody concentrations to the age at which passive immunity is lost may be used to determine the optimal age of childhood HAV vaccination.
Resumo:
Monoclonal antibodies (mAbs) inhibiting cytokines have recently emerged as new drug modalities for the treatment of chronic inflammatory diseases. Interleukin-17 (IL-17) is a T-cell-derived central mediator of autoimmunity. Immunization with Qβ-IL-17, a virus-like particle based vaccine, has been shown to produce autoantibodies in mice and was effective in ameliorating disease symptoms in animal models of autoimmunity. To characterize autoantibodies induced by vaccination at the molecular level, we generated mouse mAbs specific for IL-17 and compared them to germline Ig sequences. The variable regions of a selected hypermutated high-affinity anti-IL-17 antibody differed in only three amino acid residues compared to the likely germline progenitor. An antibody, which was backmutated to germline, maintained a surprisingly high affinity (0.5 nM). The ability of the parental hypermutated antibody and the derived germline antibody to block inflammation was subsequently tested in murine models of multiple sclerosis (experimental autoimmune encephalomyelitis), arthritis (collagen-induced arthritis), and psoriasis (imiquimod-induced skin inflammation). Both antibodies were able to delay disease onset and significantly reduced disease severity. Thus, the mouse genome unexpectedly encodes for antibodies with the ability to functionally neutralize IL-17 in vivo.
Resumo:
Asthma is a chronic inflammatory disease of the airways. The treatment of asthma is far from optimal and hence the need for novel therapeutic agents exists. The purpose of this study was to assess the anti-asthma effects of an enaminone, E121, and also its effects on human peripheral blood mononuclear cell proliferation and cytokine release. The effects of E121 were assessed in an ovalbumin-induced model of airway inflammation and airway hyperresponsiveness. In addition, the effects of E121 on phytohemagglutinin (PHA), anti-CD3 monoclonal antibody and lipopolysaccharide (LPS)-induced human peripheral blood mononuclear cell proliferation and cytokine release, respectively, were assessed. Treatment of mice with E121 significantly decreased the ovalbumin-induced increase in airway total cell influx and eosinophil infiltration and this was associated with an inhibition of ovalbumin-induced airway hyperresponsiveness. Moreover, E121 reduced PHA and anti-CD3-induced human peripheral blood mononuclear cell proliferation in vitro. E121 also inhibited PHA, anti-CD3 monoclonal antibody and LPS-induced cytokine release from human peripheral blood mononuclear cell cultures. These findings indicate that E121 exhibits anti-inflammatory and immunosuppressive activities.
Resumo:
Naive T cells are migratory cells that continuously recirculate between blood and lymphoid tissues. Antigen-specific stimulation of T cells within the lymph nodes reprograms the trafficking properties of T cells by inducing a specific set of adhesion molecules and chemokine receptors on their surface which allow these activated and effector T cells to effectively and specifically home to extralymphoid organs. The observations of organ-specific homing of T cells initiated the development of therapeutic strategies targeting adhesion receptors for organ-specific inhibition of chronic inflammation. As most adhesion receptors have additional immune functions besides mediating leukocyte trafficking, these drugs may have additional immunomodulatory effects. Therapeutic targeting of T-cell trafficking to the central nervous system is the underlying concept of a novel treatment of relapsing remitting multiple sclerosis with the humanized anti-alpha-4-integrin antibody natalizumab. In this chapter, we describe a possible preclinical in vivo approach to directly visualize the therapeutic efficacy of a given drug in inhibiting T-cell homing to a certain organ at the example of the potential of natalizumab to inhibit the trafficking of human T cells to the inflamed central nervous system in an animal model of multiple sclerosis.
Resumo:
IgE antibodies bind the high-affinity IgE Fc receptor (FcεRI), found primarily on mast cells and basophils, and trigger inflammatory cascades of the allergic response. Inhibitors of IgE-FcεRI binding have been identified and an anti-IgE therapeutic antibody (omalizumab) is used to treat severe allergic asthma. However, preformed IgE-FcεRI complexes that prime cells before allergen exposure dissociate extremely slowly and cannot be disrupted by strictly competitive inhibitors. IgE-Fc conformational flexibility indicated that inhibition could be mediated by allosteric or other non-classical mechanisms. Here we demonstrate that an engineered protein inhibitor, DARPin E2_79 (refs 9, 10, 11), acts through a non-classical inhibition mechanism, not only blocking IgE-FcεRI interactions, but actively stimulating the dissociation of preformed ligand-receptor complexes. The structure of the E2_79-IgE-Fc(3-4) complex predicts the presence of two non-equivalent E2_79 sites in the asymmetric IgE-FcεRI complex, with site 1 distant from the receptor and site 2 exhibiting partial steric overlap. Although the structure is indicative of an allosteric inhibition mechanism, mutational studies and quantitative kinetic modelling indicate that E2_79 acts through a facilitated dissociation mechanism at site 2 alone. These results demonstrate that high-affinity IgE-FcεRI complexes can be actively dissociated to block the allergic response and suggest that protein-protein complexes may be more generally amenable to active disruption by macromolecular inhibitors.