24 resultados para ANKYRIN REPEAT PROTEIN
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Designed ankyrin repeat proteins (DARPins) hold great promise as a new class of binding molecules to overcome the limitations of antibodies for biomedical applications. Here, we assessed the potential of an epithelial cell adhesion molecule (EpCAM)-specific DARPin (Ec4) for tumor targeting as a fusion toxin with Pseudomonas aeruginosa exotoxin A.
Resumo:
PURPOSE To evaluate the safety, tolerability and bioactivity of ascending doses of MP0112, a designed ankyrin repeat protein (DARPin) that binds with high affinity to vascular endothelial growth factor-A (VEGF-A), in treatment-naive patients with exudative age-related macular degeneration (AMD). DESIGN Phase I/II, open-label, multicenter, dose-escalation study. METHODS Patients were to receive a single intravitreal injection of MP0112 at doses ranging from 0.04 to 3.6 mg and be monitored for 16 weeks for safety, efficacy, pharmacokinetics, and dose response. RESULTS Altogether, 32 patients received a single injection of MP0112. The maximum tolerated dose was 1.0 mg because of a case of endophthalmitis in the 2.0 mg cohort. Drug-related adverse events were reported by 13 (41%) of 32 patients; they included ocular inflammation in 11 patients (7 mild, 4 moderate in severity). Visual acuity scores were stable or improved compared with baseline for ≥4 weeks following injection; both retinal thickness and fluorescein angiography leakage decreased in a dose-dependent manner. Rescue therapy was administered to 20 (91%) of 22 patients who received 0.04-0.4 mg MP0112 compared with 4 of 10 (40%) patients who received 1.0 or 2.0 mg. Of patients in the higher-dose cohorts who did not require rescue treatment, 83% (5/6) maintained reductions in central retinal thickness through week 16. CONCLUSIONS A single injection of 1.0 or 2.0 mg MP0112 resulted in mean decreases in retinal thickness and leakage area despite ocular inflammation. Larger-scale studies are warranted to confirm these observations.
Resumo:
Specific delivery to tumors and efficient cellular uptake of nucleic acids remain major challenges for gene-targeted cancer therapies. Here we report the use of a designed ankyrin repeat protein (DARPin) specific for the epithelial cell adhesion molecule (EpCAM) as a carrier for small interfering RNA (siRNA) complementary to the bcl-2 mRNA. For charge complexation of the siRNA, the DARPin was fused to a truncated human protamine-1 sequence. To increase the cell binding affinity and the amount of siRNA delivered into cells, DARPin dimers were generated and used as fusion proteins with protamine. All proteins expressed well in Escherichia coli in soluble form, yet, to remove tightly bound bacterial nucleic acids, they were purified under denaturing conditions by immobilized metal ion affinity chromatography, followed by refolding. The fusion proteins were capable of complexing four to five siRNA molecules per protamine, and fully retained the binding specificity for EpCAM as shown on MCF-7 breast carcinoma cells. In contrast to unspecific LipofectAMINE transfection, down-regulation of antiapoptotic bcl-2 using fusion protein complexed siRNA was strictly dependent on EpCAM binding and internalization. Inhibition of bcl-2 expression facilitated tumor cell apoptosis as shown by increased sensitivity to the anticancer agent doxorubicin.
Resumo:
Click chemistry is a powerful technology for the functionalization of therapeutic proteins with effector moieties, because of its potential for bio-orthogonal, regio-selective, and high-yielding conjugation under mild conditions. Designed Ankyrin Repeat Proteins (DARPins), a novel class of highly stable binding proteins, are particularly well suited for the introduction of clickable methionine surrogates such as azidohomoalanine (Aha) or homopropargylglycine (Hpg), since the DARPin scaffold can be made methionine-free by an M34L mutation in the N-cap which fully maintains the biophysical properties of the protein. A single N-terminal azidohomoalanine, replacing the initiator Met, is incorporated in high yield, and allows preparation of "clickable" DARPins at about 30 mg per liter E. coli culture, fully retaining stability, specificity, and affinity. For a second modification, we introduced a cysteine at the C-terminus. Such DARPins could be conveniently site-specifically linked to two moieties, polyethylene glycol (PEG) to the N-terminus and the fluorophore Alexa488 to the C-terminus. We present a DARPin selected against the epithelial cell adhesion molecule (EpCAM) with excellent properties for tumor targeting as an example. We used these doubly modified molecules to measure binding kinetics on tumor cells and found that PEGylation has no effect on dissociation rate, but slightly decreases the association rate and the maximal number of cell-bound DARPins, fully consistent with our previous model of PEG action obtained in vitro. Our data demonstrate the benefit of click chemistry for site-specific modification of binding proteins like DARPins to conveniently add several functional moieties simultaneously for various biomedical applications.
Resumo:
According to the network theory antibodies may act as antigens thus generating anti-idiotypic antibodies that can function as regulators of immune responses. Designed ankyrin repeat proteins (DARPins) are a new class of binding proteins and may serve as an alternative to antibodies. Selections from large DARPin libraries against the variable regions of a murine monoclonal anti-human IgE antibody, termed BSW17, yielded two highly specific anti-idiotypic DARPins both with high affinity. Their binding characteristics were comparable with these of a previously selected anti-idiotypic antibody. In vitro cell assays showed that the anti-idiotypic DARPins were able to inhibit the binding of BSW17 to cell-bound IgE and prevented BSW17 functional activity. These experiments demonstrate the possibility to isolate anti-idiotypic DARPins recognizing idiotypic determinants analogous to antibodies. In the future these DARPins may be further analyzed for their potential as putative vaccine candidates.
Resumo:
Inhibitory antibodies directed against coagulation factor VIII (FVIII) can be found in patients with acquired and congenital hemophilia A. Such FVIII-inhibiting antibodies are routinely detected by the functional Bethesda Assay. However, this assay has a low sensitivity and shows a high inter-laboratory variability. Another method to detect antibodies recognizing FVIII is ELISA, but this test does not allow the distinction between inhibitory and non-inhibitory antibodies. Therefore, we aimed at replacing the intricate antigen FVIII by Designed Ankyrin Repeat Proteins (DARPins) mimicking the epitopes of FVIII inhibitors. As a model we used the well-described inhibitory human monoclonal anti-FVIII antibody, Bo2C11, for the selection on DARPin libraries. Two DARPins were selected binding to the antigen-binding site of Bo2C11, which mimic thus a functional epitope on FVIII. These DARPins inhibited the binding of the antibody to its antigen and restored FVIII activity as determined in the Bethesda assay. Furthermore, the specific DARPins were able to recognize the target antibody in human plasma and could therefore be used to test for the presence of Bo2C11-like antibodies in a large set of hemophilia A patients. These data suggest, that our approach might be used to isolate epitopes from different sets of anti-FVIII antibodies in order to develop an ELISA-based screening assay allowing the distinction of inhibitory and non-inhibitory anti-FVIII antibodies according to their antibody signatures.
Resumo:
The interaction of immunoglobulin E (IgE) antibodies with the high-affinity receptor, FcεRI, plays a central role in initiating most allergic reactions. The IgE-receptor interaction has been targeted for treatment of allergic diseases, and many high-affinity macromolecular inhibitors have been identified. Small molecule inhibitors would offer significant advantages over current anti-IgE treatment, but no candidate compounds have been identified and fully validated. Here, we report the development of a time-resolved fluorescence resonance energy transfer (TR-FRET) assay for monitoring the IgE-receptor interaction. The TR-FRET assay measures an increase in fluorescence intensity as a donor lanthanide fluorophore is recruited into complexes of site-specific Alexa Fluor 488-labeled IgE-Fc and His-tagged FcεRIα proteins. The assay can readily monitor classic competitive inhibitors that bind either IgE-Fc or FcεRIα in equilibrium competition binding experiments. Furthermore, the TR-FRET assay can also be used to follow the kinetics of IgE-Fc-FcεRIα dissociation and identify inhibitory ligands that accelerate the dissociation of preformed complexes, as demonstrated for an engineered DARPin (designed ankyrin repeat protein) inhibitor. The TR-FRET assay is suitable for high-throughput screening (HTS), as shown by performing a pilot screen of the National Institutes of Health (NIH) Clinical Collection Library in a 384-well plate format.
Resumo:
Fusion toxins used for cancer-related therapy have demonstrated short circulation half-lives, which impairs tumor localization and, hence, efficacy. Here, we demonstrate that the pharmacokinetics of a fusion toxin composed of a designed ankyrin repeat protein (DARPin) and domain I–truncated Pseudomonas Exotoxin A (PE40/ETA″) can be significantly improved by facile bioorthogonal conjugation with a polyethylene glycol (PEG) polymer at a unique position. Fusion of the anti-EpCAM DARPin Ec1 to ETA″ and expression in methionine-auxotrophic E. coli enabled introduction of the nonnatural amino acid azidohomoalanine (Aha) at position 1 for strain-promoted click PEGylation. PEGylated Ec1-ETA″ was characterized by detailed biochemical analysis, and its potential for tumor targeting was assessed using carcinoma cell lines of various histotypes in vitro, and subcutaneous and orthotopic tumor xenografts in vivo. The mild click reaction resulted in a well-defined mono-PEGylated product, which could be readily purified to homogeneity. Despite an increased hydrodynamic radius resulting from the polymer, the fusion toxin demonstrated high EpCAM-binding activity and retained cytotoxicity in the femtomolar range. Pharmacologic analysis in mice unveiled an almost 6-fold increase in the elimination half-life (14 vs. 82 minutes) and a more than 7-fold increase in the area under the curve (AUC) compared with non-PEGylated Ec1-ETA″, which directly translated in increased and longer-lasting effects on established tumor xenografts. Our data underline the great potential of combining the inherent advantages of the DARPin format with bioorthogonal click chemistry to overcome the limitations of engineering fusion toxins with enhanced efficacy for cancer-related therapy.
Resumo:
The concept of multispecific antibodies is of high therapeutic interest but has failed to produce pharmaceutical products due to the poor biophysical properties of such molecules. Here, we propose an alternative and simple way to generate bispecific binding molecules using designed ankyrin repeat proteins (DARPins). For this purpose, monovalent DARPins with different epitope specificities were selected against the alpha chain of the high-affinity receptor for human immunoglobulin E (IgE) (FcepsilonRIalpha). Two of the isolated binders interfering with IgE binding to the receptor were joined to each other or to themselves via a flexible protein linker. The resulting bivalent and bispecific DARPins were tested for their ability to prevent allergen-induced cell degranulation using rat basophilic leukemia cells stably transfected with human FcepsilonRIalpha. The bispecific DARPin construct was the most potent one, efficiently blocking the IgE-FcepsilonRI interaction and preventing the release of proinflammatory mediators. Noteworthy, the multivalent and multispecific DARPin construct did not show any alteration of the beneficial biophysical properties of the monovalent parental DARPins. Hence, bispecific DARPins may be used to generate receptor antagonists simultaneously targeting different epitopes on the same molecule. Moreover, they easily overcome the limiting immunoglobulin binding paradigm (one binding molecule=one epitope) and thereby represent an alternative to monoclonal antibodies in cases where the immunoglobulin scaffold is unsuitable.
Resumo:
BACKGROUND: Demineralized bone matrix (DBM) is used for the treatment of osseous defects. Conditioned medium from native bone chips can activate transforming growth factor (TGF)-β signaling in mesenchymal cells. The aim of the study was to determine whether processing of native bone into DBM affects the activity of the conditioned medium. METHODS: Porcine cortical bone blocks were subjected to defatting, different concentrations of hydrochloric acid and various temperatures. DBM was lyophilized, ground, and placed into culture medium. Human gingiva and periodontal fibroblasts were exposed to the respective conditioned medium (DBCM). Changes in the expression of TGF-β target genes were determined. RESULTS: DBCM altered the expression of TGF-β target genes, e.g., adrenomedullin, pentraxin 3, KN Motif And Ankyrin Repeat Domains 4, interleukin 11, NADPH oxidase 4, and BTB (POZ) Domain Containing 11, by at least five-fold. The response was observed in fibroblasts from both sources. Defatting lowered the activity of DBCM. The TGF-β receptor type I kinase inhibitor SB431542, but not the inhibitor of bone morphogenetic protein receptor dorsomorphin, blocked the effects of DBCM on gene expression. Moreover, conditioned medium obtained from commercial human DBM modulated the expression of TGF-β target genes. CONCLUSION: The findings suggest that the conditioned medium from demineralized bone matrix can activate TGF-β signaling in oral fibroblasts. KEYWORDS: TGF-beta superfamily proteins; bone; bone substitutes; bone transplantation; conditioned media; freeze drying
Resumo:
Antibody-drug conjugates (ADCs) have emerged as a promising class of anticancer agents, combining the specificity of antibodies for tumor targeting and the destructive potential of highly potent drugs as payload. An essential component of these immunoconjugates is a bifunctional linker capable of reacting with the antibody and the payload to assemble a functional entity. Linker design is fundamental, as it must provide high stability in the circulation to prevent premature drug release, but be capable of releasing the active drug inside the target cell upon receptor-mediated endocytosis. Although ADCs have demonstrated an increased therapeutic window, compared to conventional chemotherapy in recent clinical trials, therapeutic success rates are still far from optimal. To explore other regimes of half-life variation and drug conjugation stoichiometries, it is necessary to investigate additional binding proteins which offer access to a wide range of formats, all with molecularly defined drug conjugation. Here, we delineate recent progress with site-specific and biorthogonal conjugation chemistries, and discuss alternative, biophysically more stable protein scaffolds like Designed Ankyrin Repeat Proteins (DARPins), which may provide such additional engineering opportunities for drug conjugates with improved pharmacological performance.
Resumo:
The monoclonal anti-IgE antibody omalizumab (Xolair is mostly used for the treatment of severe allergic asthma. However, the requirement of high doses and suboptimal cost-effectiveness limits the use of the treatment. Here we propose to use a new drug format based on non-immunoglobulin structures, potentially offering increased clinical efficacy while being more cost-effective. For this purpose, DARPins (designed ankyrin repeat proteins) against the constant heavy chain region of IgE have been isolated. DARPins were binding to IgE with high specificity and affinities in the low nanomolar range. Selected DARPins antagonized the interaction between IgE and its high-affinity receptor in inhibition assays. Furthermore, anti-IgE DARPins were shown to inhibit proinflammatory mediator release from rat basophilic leukemia cells expressing human high-affinity IgE receptors with higher efficacy than the monoclonal anti-IgE antibody omalizumab. DARPins may thus represent promising future drug candidates for the treatment of allergy.
Resumo:
Designed Ankyrin Repeat Proteins (DARPins) represent a novel class of binding molecules. Their favorable biophysical properties such as high affinity, stability and expression yields make them ideal candidates for tumor targeting. Here, we describe the selection of DARPins specific for the tumor-associated antigen epithelial cell adhesion molecule (EpCAM), an approved therapeutic target on solid tumors. We selected DARPins from combinatorial libraries by both phage display and ribosome display and compared their binding on tumor cells. By further rounds of random mutagenesis and ribosome display selection, binders with picomolar affinity were obtained that were entirely monomeric and could be expressed at high yields in the cytoplasm of Escherichia coli. One of the binders, denoted Ec1, bound to EpCAM with picomolar affinity (K(d)=68 pM), and another selected DARPin (Ac2) recognized a different epitope on EpCAM. Through the use of a variety of bivalent and tetravalent arrangements with these DARPins, the off-rate on cells was further improved by up to 47-fold. All EpCAM-specific DARPins were efficiently internalized by receptor-mediated endocytosis, which is essential for intracellular delivery of anticancer agents to tumor cells. Thus, using EpCAM as a target, we provide evidence that DARPins can be conveniently selected and rationally engineered to high-affinity binders of various formats for tumor targeting.