83 resultados para AML Schema (XSD)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
microRNA-223 (miR-223) can trigger normal granulopoiesis. miR-223 expression is regulated by two distinct CEBPA (CCAAT/enhancer binding protein-alpha) sites. Here, we report that miR-223 is largely suppressed in cells from acute myeloid leukemia (AML) patients. By sequencing, we found that miR-223 suppression in AML is not caused by DNA sequence alterations, nor is it mediated by promoter hypermethylation. The analysis of the individual contribution of both CEBPA sites to miR-223 regulation identified the site upstream of the miR-223 primary transcript as the predominant regulatory element. Our results suggest that miR-223 suppression in AML is caused by impaired miR-223 upstream factors.
Resumo:
The transcription factor PU.1 is essential for myeloid development. Targeted disruption of an upstream regulatory element (URE) decreases PU.1 expression by 80% and leads to acute myeloid leukemia (AML) in mice. Here, we sequenced the URE sequences of PU.1 in 120 AML patients. Four polymorphisms (single nucleotide polymorphisms [SNPs]) in the URE were observed, with homozygosity in all SNPs in 37 patients. Among them, we compared samples at diagnosis and remission, and one patient with cytogenetically normal acute myeloid leukemia M2 was identified with heterozygosity in 3 of the SNPs in the URE at remission. Loss of heterozygosity was further found in this patient at 2 polymorphic sites in the 5' promoter region and in 2 intronic sites flanking exon 4, thus suggesting loss of heterozygosity covering at least 40 kb of the PU.1 locus. Consistently, PU.1 expression in this patient was markedly reduced. Our study suggests that heterozygous deletion of the PU.1 locus can be associated with human AML.
Resumo:
Transcription factors play a key role in the commitment of hematopoietic stem cells to differentiate into specific lineages [78]. This is particularly important in that a block in terminal differentiation is the key contributing factor in acute leukemias. This general theme of the role of transcription factors in differentiation may also extend to other tissues, both in terms of normal development and cancer. Consistent with the role of transcription factors in hematopoietic lineage commitment is the frequent finding of aberrations in transcription factors in AML patients. Here, we intend to review recent findings on aberrations in lineage-restricted transcription factors as observed in patients with acute myeloid leukemia (AML).
Resumo:
Treatment strategies for relapsed/refractory AML are limited and disappointing. Recently, high-dose melphalan (HDM) chemotherapy and autologous hematopoietic SCT (HSCT) has been proposed for AML re-induction. We investigated the impact of HDM remission induction in highly advanced relapsed/refractory AML patients planned for allogeneic HSCT. A total of 23 patients with relapsed/refractory AML were prospectively scheduled for HDM with or without stem cell support followed by myeloablative allogeneic HSCT. Patients included nine individuals with a history of previous HSCT (seven allogeneic, two autologous). A total of 18 patients (78%) achieved a leukemia-free state and an additional four had substantial reduction of the initial leukemia burden warranting treatment continuation. There were no differences between patients with or without immediate stem cell support regarding mucositis or other organ toxicity. A total of 20 patients proceeded to myeloablative allogeneic HSCT. Outcome of allogeneic HSCT was poor: 11 patients (55%) relapsed, 7 patients (35%) died from TRM and only 2 patients (10%) were alive at the last follow-up. Our study shows that HDM is effective in inducing a leukemia-free state in patients with highly advanced relapsed/refractory AML. Leukemia burden reduction with HDM, however, did not translate into improved OS.
Resumo:
CCAAT/enhancer-binding protein-alpha (CEBPA) is crucial for normal granulopoiesis and is frequently disrupted in acute myeloid leukaemia (AML). Increasing evidence suggests that CEBPA exerts its effects, in parts, by regulating specific microRNAs (miRNAs), as previously shown for miR-223. The aim of this study was to investigate the genome-wide pattern of miRNAs regulated by CEBPA in myeloid cells.
Resumo:
In older patients with acute myeloid leukemia (AML), the prevention of relapse has remained one of the major therapeutic challenges, with more than 75% relapses after complete remission. The anti-CD33 immunotoxin conjugate gemtuzumab ozogamicin (GO) has shown antileukemic remission induction activity in patients with relapsed AML. Patients with AML or refractory anemia with excess blasts in first complete remission attained after intensive induction chemotherapy were randomized between 3 cycles of GO (6 mg/m(2) every 4 weeks) or no postremission therapy (control) to assess whether GO would improve outcome. The 2 treatment groups (113 patients receiving GO vs 119 control patients) were comparable with regard to age (60-78 years, median 67 years), performance status, and cytogenetics. A total of 110 of 113 received at least 1 cycle of GO, and 65 of 113 patients completed the 3 cycles. Premature discontinuation was mainly attributable to incomplete hematologic recovery or intercurrent relapse. Median time to recovery of platelets 50 x 10(9)/L and neutrophils 0.5 x 10(9)/L after GO was 14 days and 20 days. Nonhematologic toxicities were mild overall, but there was 1 toxic death caused by liver failure. There were no significant differences between both treatment groups with regard to relapse probabilities, nonrelapse mortality, overall survival, or disease-free survival (17% vs 16% at 5 years). Postremission treatment with GO in older AML patients does not provide benefits regarding any clinical end points. The HOVON-43 study is registered at The Netherlands Trial Registry (number NTR212) and at http://www.controlled-trials.com as ISRCTN77039377.
Resumo:
CCAAT/enhancer binding protein-α (CEBPA) mutations in acute myeloid leukemia (AML) patients with a normal karyotype (NK) confer favorable prognosis, whereas NK-AML patients per se are of intermediate risk. This suggests that blocked CEBPA function characterizes NK-AML with favorable outcome. We determined the prognostic significance of CEBPA DNA binding function by enzyme-linked immunosorbent assay in 105 NK-AML patients. Suppressed CEBPA DNA binding was defined by 21 good-risk AML patients with inv(16) or t(8;21) (both abnormalities targeting CEBPA) and 8 NK-AML patients with dominant-negative CEBPA mutations. NK-AML patients with suppressed CEBPA function showed a better overall survival (P = .0231) and disease-free survival (P = .0069) than patients with conserved CEBPA function. Suppressed CEBPA DNA binding was an independent marker for better overall survival and disease-free survival in a multivariable analysis that included FLT3-ITD, NPM1 and CEBPA mutation status, white blood cell count, age and lactate dehydrogenase. These data indicate that suppressed CEBPA function is associated with favorable prognosis in NK-AML patients.
Resumo:
Deregulation of the myeloid key transcription factor CEBPA is a common event in acute myeloid leukemia (AML). We previously reported that the chaperone calreticulin is activated in subgroups of AML patients and that calreticulin binds to the stem loop region of the CEBPA mRNA, thereby blocking CEBPA translation. In this study, we screened for additional CEBPA mRNA binding proteins and we identified protein disulfide isomerase (PDI), an endoplasmic reticulum (ER) resident protein, to bind to the CEBPA mRNA stem loop region. We found that forced PDI expression in myeloid leukemic cells in fact blocked CEBPA translation, but not transcription, whereas abolishing PDI function restored CEBPA protein. In addition, PDI protein displayed direct physical interaction with calreticulin. Induction of ER stress in leukemic HL60 and U937 cells activated PDI expression, thereby decreasing CEBPA protein levels. Finally, leukemic cells from 25.4% of all AML patients displayed activation of the unfolded protein response as a marker for ER stress, and these patients also expressed significantly higher PDI levels. Our results indicate a novel role of PDI as a member of the ER stress-associated complex mediating blocked CEBPA translation and thereby suppressing myeloid differentiation in AML patients with activated unfolded protein response (UPR).
Resumo:
Autologous stem cell transplantation (ASCT) is widely used to consolidate first remission in AML. We determined the significance of circulating CD34+ cells at the day of blood stem cell collection in 78 AML patients. Patients mobilizing more than 60,000 CD34+ cells/ml had shorter overall survival (OS; P=0.0274), shorter time to progression (TTP; P=0.0014), and a higher relapse rate (P=0.0177). High levels of CD34+ cells were an independent marker for shorter OS and TTP in a multivariate analysis. These data suggest that ASCT is associated with unfavorable outcome in AML patients with high levels of mobilized peripheral CD34+ cells.
Resumo:
The calcium-binding protein calreticulin (CRT) regulates protein folding in the endoplasmic reticulum (ER) and is induced in acute myeloid leukemia (AML) cells with activation of the unfolded protein response. Intracellular CRT translocation to the cell surface induces immunogenic cell death, suggesting a role in tumor suppression. In this study, we investigated CRT regulation in the serum of patients with AML. We found that CRT is not only exposed by exocytosis on the outer cell membrane after treatment with anthracyclin but also ultimately released to the serum in vitro and in AML patients during induction therapy. Leukemic cells of 113 AML patients showed increased levels of cell-surface CRT (P < .0001) and N-terminus serum CRT (P < .0001) compared with normal myeloid cells. Neutrophil elastase was identified to cleave an N-terminus CRT peptide, which was characterized as vasostatin and blocked ATRA-triggered differentiation. Levels of serum vasostatin in patients with AML inversely correlated with bone marrow vascularization, suggesting a role in antiangiogenesis. Finally, patients with increased vasostatin levels had longer relapse-free survival (P = .04) and specifically benefited from autologous transplantation (P = .006). Our data indicate that vasostatin is released from cell-surface CRT and impairs differentiation of myeloid cells and vascularization of the bone marrow microenvironment.
Resumo:
Background This study addressed the temporal properties of personality disorders and their treatment by schema-centered group psychotherapy. It investigated the change mechanisms of psychotherapy using a novel method by which psychotherapy can be modeled explicitly in the temporal domain. Methodology and Findings 69 patients were assigned to a specific schema-centered behavioral group psychotherapy, 26 to social skills training as a control condition. The largest diagnostic subgroups were narcissistic and borderline personality disorder. Both treatments offered 30 group sessions of 100 min duration each, at a frequency of two sessions per week. Therapy process was described by components resulting from principal component analysis of patients' session-reports that were obtained after each session. These patient-assessed components were Clarification, Bond, Rejection, and Emotional Activation. The statistical approach focused on time-lagged associations of components using time-series panel analysis. This method provided a detailed quantitative representation of therapy process. It was found that Clarification played a core role in schema-centered psychotherapy, reducing rejection and regulating the emotion of patients. This was also a change mechanism linked to therapy outcome. Conclusions/Significance The introduced process-oriented methodology allowed to highlight the mechanisms by which psychotherapeutic treatment became effective. Additionally, process models depicted the actual patterns that differentiated specific diagnostic subgroups. Time-series analysis explores Granger causality, a non-experimental approximation of causality based on temporal sequences. This methodology, resting upon naturalistic data, can explicate mechanisms of action in psychotherapy research and illustrate the temporal patterns underlying personality disorders.
Resumo:
The current paradigm on leukemogenesis indicates that leukemias are propagated by leukemic stem cells. The genomic events and pathways involved in the transformation of hematopoietic precursors into leukemic stem cells are increasingly understood. This concept is based on genomic mutations or functional dysregulation of transcription factors in malignant cells of patients with acute myeloid leukemia (AML). Loss of the CCAAT/enhancer binding protein-alpha (CEBPA) function in myeloid cells in vitro and in vivo leads to a differentiation block, similar to that observed in blasts from AML patients. CEBPA alterations in specific subgroups of AML comprise genomic mutations leading to dominant-negative mutant proteins, transcriptional suppression by leukemic fusion proteins, translational inhibition by activated RNA-binding proteins, and functional inhibition by phosphorylation or increased proteasomal-dependent degradation. The PU.1 gene can be mutated or its expression or function can be blocked by leukemogenic fusion proteins in AML. Point mutations in the RUNX1/AML1 gene are also observed in specific subtypes of AML, in addition to RUNX1 being the most frequent target for chromosomal translocation in AML. These data are persuasive evidence that impaired function of particular transcription factors contributes directly to the development of human AML, and restoring their function represents a promising target for novel therapeutic strategies in AML.