97 resultados para AMAZONIAN LANDSCAPE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Hellas basin acts as a major sink for the southern highlands of Mars and is likely to have recorded several episodes of sedimentation and erosion. The north-western part of the basin displays a potentially unique Amazonian landscape domain in the deepest part of Hellas, called “banded terrain”, which is a deposit characterized by an alternation of narrow band shapes and inter-bands displaying a sinuous and relatively smooth surface texture suggesting a viscous flow origin. Here we use high-resolution (HiRISE and CTX) images to assess the geomorphological interaction of the banded terrain with the surrounding geomorphologic domains in the NW interior of Hellas to gain a better understanding of the geological evolution of the region as a whole. Our analysis reveals that the banded terrain is associated with six geomorphologic domains: a central plateau named Alpheus Colles, plain deposits (P1 and P2), reticulate (RT1 and RT2) and honeycomb terrains. Based on the analysis of the geomorphology of these domains and their cross-cutting relationships, we show that no widespread deposition post-dates the formation of the banded terrain, which implies that this domain is the youngest and latest deposit of the interior of Hellas. Therefore, the level of geologic activity in the NW Hellas during the Amazonian appears to have been relatively low and restricted to modification of the landscape through mechanical weathering, aeolian and periglacial processes. Thermophysical data and cross-cutting relationships support hypotheses of modification of the honeycomb terrain via vertical rise of diapirs such as ice diapirism, and the formation of the plain deposits through deposition and remobilization of an ice-rich mantle deposit. Finally, the observed gradual transition between honeycomb and banded terrain suggests that the banded terrain may have covered a larger area of the NW interior of Hellas in the past than previously thought. This has implications on the understanding of the evolution of the deepest part of Hellas.
Resumo:
OBJECTIVES: The present literature review conceptualises landscape as a health resource that promotes physical, mental, and social well-being. Different health-promoting landscape characteristics are discussed. METHODS: This article is based on a scoping study which represents a special kind of qualitative literature review. Over 120 studies have been reviewed in a five-step-procedure, resulting in a heuristic device. RESULTS: A set of meaningful pathways that link landscape and health have been identified. Landscapes have the potential to promote mental well-being through attention restoration, stress reduction, and the evocation of positive emotions; physical well-being through the promotion of physical activity in daily life as well as leisure time and through walkable environments; and social well-being through social integration, social engagement and participation, and through social support and security. CONCLUSION: This scoping study allows us to systematically describe the potential of landscape as a resource for physical, mental and social well-being. A heuristic framework is presented that can be applied in future studies, facilitating systematic and focused research approaches and informing practical public health interventions.
Resumo:
Swidden agriculture is often deemed responsible for deforestation and forest degradation in tropical regions, yet swidden landscapes are commonly not visible on land cover/use maps, making it difficult to prove this assertion. For a future REDD+ scheme, the correct identification of deforestation and forest degradation and linking these processes to land use is crucial. However, it is a key challenge to distinguish degradation and deforestation from temporal vegetation dynamics inherent to swiddening. In this article we present an approach for spatial delineation of swidden systems based on landscape mosaics. Furthermore we introduce a classification for change processes based on the change matrix of these landscape mosaics. Our approach is illustrated by a case study in Viengkham district in northern Laos. Over a 30-year time period the swidden landscapes have increased in extent and they have degraded, shifting from long crop–fallow cycles to short cycles. From 2007 to 2009 degradation within the swidden system accounted for half of all the landscape mosaics change processes. Pioneering shifting cultivation did not prevail. The landscape mosaics approach could be used in a swidden compatible monitoring, reporting and verification (MRV) system of a future REDD+ framework.