8 resultados para ALCOHOL EXPOSURE

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Alcohol-induced liver disease (ALD) is a leading cause of nonaccident-related deaths in the United States. Although liver damage caused by ALD is reversible when discovered at the earlier stages, current risk assessment tools are relatively nonspecific. Identification of an early specific signature of ALD would aid in therapeutic intervention and recovery. In this study, the metabolic changes associated with ALD were examined using alcohol-fed male Ppara-null mouse as a model of ALD. Principal components analysis of the mass spectrometry-based urinary metabolic profile showed that alcohol-treated wild-type and Ppara-null mice could be distinguished from control animals without information on history of alcohol consumption. The urinary excretion of ethyl-sulfate, ethyl-beta-d-glucuronide, 4-hydroxyphenylacetic acid, and 4-hydroxyphenylacetic acid sulfate was elevated and that of the 2-hydroxyphenylacetic acid, adipic acid, and pimelic acid was depleted during alcohol treatment in both wild-type and the Ppara-null mice albeit to different extents. However, indole-3-lactic acid was exclusively elevated by alcohol exposure in Ppara-null mice. The elevation of indole-3-lactic acid is mechanistically related to the molecular events associated with development of ALD in alcohol-treated Ppara-null mice. This study demonstrated the ability of a metabolomics approach to identify early, noninvasive biomarkers of ALD pathogenesis in Ppara-null mouse model.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Since the development and prognosis of alcohol-induced liver disease (ALD) vary significantly with genetic background, identification of a genetic background-independent noninvasive ALD biomarker would significantly improve screening and diagnosis. This study explored the effect of genetic background on the ALD-associated urinary metabolome using the Ppara-null mouse model on two different backgrounds, C57BL/6 (B6) and 129/SvJ (129S), along with their wild-type counterparts. Reversed-phase gradient UPLC-ESI-QTOF-MS analysis revealed that urinary excretion of a number of metabolites, such as ethylsulfate, 4-hydroxyphenylacetic acid, 4-hydroxyphenylacetic acid sulfate, adipic acid, pimelic acid, xanthurenic acid, and taurine, were background-dependent. Elevation of ethyl-β-d-glucuronide and N-acetylglycine was found to be a common signature of the metabolomic response to alcohol exposure in wild-type as well as in Ppara-null mice of both strains. However, increased excretion of indole-3-lactic acid and phenyllactic acid was found to be a conserved feature exclusively associated with the alcohol-treated Ppara-null mouse on both backgrounds that develop liver pathologies similar to the early stages of human ALD. These markers reflected the biochemical events associated with early stages of ALD pathogenesis. The results suggest that indole-3-lactic acid and phenyllactic acid are potential candidates for conserved and pathology-specific high-throughput noninvasive biomarkers for early stages of ALD.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Hepatocellular cancer is the fifth most frequent cancer in men and the eighth in women worldwide. Established risk factors are chronic hepatitis B and C infection, chronic heavy alcohol consumption, obesity and type 2 diabetes, tobacco use, use of oral contraceptives, and aflatoxin-contaminated food. Almost 90% of all hepatocellular carcinomas develop in cirrhotic livers. In Western countries, attributable risks are highest for cirrhosis due to chronic alcohol abuse and viral hepatitis B and C infection. Among those with alcoholic cirrhosis, the annual incidence of hepatocellular cancer is 1-2%. An important mechanism implicated in alcohol-related hepatocarcinogenesis is oxidative stress from alcohol metabolism, inflammation, and increased iron storage. Ethanol-induced cytochrome P-450 2E1 produces various reactive oxygen species, leading to the formation of lipid peroxides such as 4-hydroxy-nonenal. Furthermore, alcohol impairs the antioxidant defense system, resulting in mitochondrial damage and apoptosis. Chronic alcohol exposure elicits hepatocyte hyperregeneration due to the activation of survival factors and interference with retinoid metabolism. Direct DNA damage results from acetaldehyde, which can bind to DNA, inhibit DNA repair systems, and lead to the formation of carcinogenic exocyclic DNA etheno adducts. Finally, chronic alcohol abuse interferes with methyl group transfer and may thereby alter gene expression.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Over the last decade, increasing evidence of cognitive functions of the cerebellum during development and learning processes could be ascertained. Posterior fossa malformations such as cerebellar hypoplasia or Joubert syndrome are known to be related to developmental problems in a marked to moderate extent. More detailed analyses reveal special deficits in attention, processing speed, visuospatial functions, and language. A study about Dandy Walker syndrome states a relationship of abnormalities in vermis lobulation with developmental problems. Further lobulation or volume abnormalities of the cerebellum and/or vermis can be detected in disorders as fragile X syndrome, Downs's syndrome, William's syndrome, and autism. Neuropsychological studies reveal a relation of dyslexia and attention deficit disorder with cerebellar functions. These functional studies are supported by structural abnormalities in neuroimaging in these disorders. Acquired cerebellar or vermis atrophy was found in groups of children with developmental problems such as prenatal alcohol exposure or extreme prematurity. Also, focal lesions during childhood or adolescence such as cerebellar tumor or stroke are related with neuropsychological abnormalities, which are most pronounced in visuospatial, language, and memory functions. In addition, cerebellar atrophy was shown to be a bad prognostic factor considering cognitive outcome in children after brain trauma and leukemia. In ataxia teleangiectasia, a neurodegenerative disorder affecting primarily the cerebellar cortex, a reduced verbal intelligence quotient and problems of judgment of duration are a hint of the importance of the cerebellum in cognition. In conclusion, the cerebellum seems to play an important role in many higher cognitive functions, especially in learning. There is a suggestion that the earlier the incorrect influence, the more pronounced the problems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Craving for alcohol is probably involved in acquisition and maintenance of alcohol dependence to a substantial degree. However, the brain substrates and mechanisms that underlie alcohol craving await more detailed elucidation. METHOD: Positron emission tomography was used to map regional cerebral blood flow (CBF) in 21 detoxified patients with alcohol dependence during exposure to alcoholic and non-alcoholic beverages. RESULTS: During the alcohol condition compared with the control condition, significantly increased CBF was found in the ventral putamen. Additionally, activated areas included insula, dorsolateral prefrontal cortex and cerebellum. Cerebral blood flow increase in these regions was related to self-reports of craving assessed in the alcoholic patients. CONCLUSIONS: In this investigation, cue-induced alcohol craving was associated with activation of brain regions particularly involved in brain reward mechanisms, memory and attentional processes. These results are consistent with studies on craving for other addictive substances and may offer strategies for more elaborate studies on the neurobiology of addiction.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND: Studies were carried out to test the hypothesis that administration of a glucocorticoid Type II receptor antagonist, mifepristone (RU38486), just prior to withdrawal from chronic alcohol treatment, would prevent the consequences of the alcohol consumption and withdrawal in mice. MATERIALS AND METHODS: The effects of administration of a single intraperitoneal dose of mifepristone were examined on alcohol withdrawal hyperexcitability. Memory deficits during the abstinence phase were measured using repeat exposure to the elevated plus maze, the object recognition test, and the odor habituation/discrimination test. Neurotoxicity in the hippocampus and prefrontal cortex was examined using NeuN staining. RESULTS: Mifepristone reduced, though did not prevent, the behavioral hyperexcitability seen in TO strain mice during the acute phase of alcohol withdrawal (4 hours to 8 hours after cessation of alcohol consumption) following chronic alcohol treatment via liquid diet. There were no alterations in anxiety-related behavior in these mice at 1 week into withdrawal, as measured using the elevated plus maze. However, changes in behavior during a second exposure to the elevated plus maze 1 week later were significantly reduced by the administration of mifepristone prior to withdrawal, indicating a reduction in the memory deficits caused by the chronic alcohol treatment and withdrawal. The object recognition test and the odor habituation and discrimination test were then used to measure memory deficits in more detail, at between 1 and 2 weeks after alcohol withdrawal in C57/BL10 strain mice given alcohol chronically via the drinking fluid. A single dose of mifepristone given at the time of alcohol withdrawal significantly reduced the memory deficits in both tests. NeuN staining showed no evidence of neuronal loss in either prefrontal cortex or hippocampus after withdrawal from chronic alcohol treatment. CONCLUSIONS: The results suggest mifepristone may be of value in the treatment of alcoholics to reduce their cognitive deficits.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Concentrations of corticosterone in brain areas of TO strain mice were measured by radioimmunoassay. The studies examined the effects of routine laboratory maneuvers, variation during the circadian peak, adrenalectomy, social defeat and acute injections of alcohol on these concentrations. Brief handling of mice increased corticosterone levels in plasma but not in striatum and reduced those in the hippocampus. Single injections of isotonic saline raised the plasma concentrations to a similar extent as the handling, but markedly elevated concentrations in the three brain regions. Five minutes exposure to a novel environment increased hippocampal and cerebral cortical corticosterone levels and striatal concentrations showed a larger rise. However, by 30 min in the novel environment, plasma concentrations rose further while those in striatum and cerebral cortex fell to control levels and hippocampal corticosterone remained elevated. Over the period of the circadian peak the hippocampal and striatal concentrations paralleled the plasma concentrations but cerebral cortical concentrations showed only small changes. Adrenalectomy reduced plasma corticosterone concentrations to below detectable levels after 48 h but corticosterone levels were only partially reduced in the hippocampus and striatum and remained unchanged in the cerebral cortex. Single or repeated social defeat increased both brain and plasma concentrations after 1 h. Acute injections of alcohol raised the regional brain levels in parallel with plasma concentrations. The results show that measurements of plasma concentrations do not necessarily reflect the levels in brain. The data also demonstrate that corticosterone levels can change differentially in specific brain regions. These results, and the residual hormone seen in the brain after adrenalectomy, are suggestive evidence for a local origin of central corticosterone.