7 resultados para AK43-4934
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The wild-type cholecystokinin type 2 (CCK(2)) receptor is expressed in many gastrointestinal and lung tumours. A splice variant of the CCK(2) receptor with retention of intron 4 (CCK(2)Ri4sv) showing constitutive activity associated with increased tumour growth was described in few colorectal, pancreatic and gastric cancers. Given the potential functional and clinical importance of this spliceoform, its occurrence was quantitatively characterized in a broad collection of 81 gastrointestinal and lung tumours, including insulinomas, ileal carcinoids, gastrointestinal stromal tumours (GIST), gastric, colorectal and pancreatic ductal adenocarcinomas, cholangiocellular and hepatocellular carcinomas, small cell lung cancers (SCLC), non-SCLC (nSCLC) and bronchopulmonary carcinoids, as well as 21 samples of corresponding normal tissues. These samples were assessed for transcript expression of total CCK(2) receptor, wild-type CCK(2) receptor and CCK(2)Ri4sv with end-point and real-time RT-PCR, and for total CCK(2) receptor protein expression on the basis of receptor binding with in vitro receptor autoradiography. Wild-type CCK(2) receptor transcripts were found in the vast majority of tumours and normal tissues. CCK(2)Ri4sv mRNA expression was present predominantly in insulinomas (incidence 100%), GIST (100%) and SCLC (67%), but rarely in pancreatic, colorectal and gastric carcinomas and nSCLC. It was not found in wild-type CCK(2) receptor negative tumours or any normal tissues tested. CCK(2)Ri4sv transcript levels in individual tumours were low, ranging from 0.02% to 0.14% of total CCK(2) receptor transcripts. In conclusion, the CCK(2)Ri4sv is a marker of specific gastrointestinal and lung tumours. With its high selectivity for and high incidence in SCLC and GIST, it may represent an attractive clinical target.
Resumo:
The unfolded protein response (UPR) is triggered by the accumulation of misfolded proteins within the endoplasmic reticulum (ER). The role of the UPR during leukemogenesis is unknown so far. Here, we studied the induction of mediators of the UPR in leukaemic cells of AML patients. Increased expression of the spliced variant of the X-box binding protein 1 (XBP1s) was detected in 17.4% (16 of 92) of AML patients. Consistent with activated UPR, this group also had increased expression of ER-resident chaperones such as the 78 kD glucose-regulated protein (GRP78) and of calreticulin. Conditional expression of calreticulin in leukaemic U937 cells was found to increase calreticulin binding to the CEBPA mRNA thereby efficiently blocking translation of the myeloid key transcription factor CEBPA and ultimately affecting myeloid differentiation. Consequently, leukaemic cells from AML patients with activated UPR and thus increased calreticulin levels showed in fact suppressed CEBPA protein expression. We identified two functional ER stress response elements (ERSE) in the calreticulin promoter. The presence of NFY and ATF6, as well as an intact binding site for YY1 within these ERSE motifs were essential for mediating sensitivity to ER stress and activation of calreticulin. Thus, we propose a model of the UPR being activated in a considerable subset of AML patients through induction of calreticulin along the ATF6 pathway, thereby ultimately suppressing CEBPA translation and contributing to the block in myeloid differentiation.
Resumo:
In idiopathic portal hypertension (IPH) typical vascular lesions are present in the branches of the portal vein or in the perisinusoidal area of the liver. Similar histological alterations have been reported in the pulmonary vasculature of patients with idiopathic pulmonary artery hypertension (IPAH). As IPAH is associated with mutations of the bone morphogenetic protein receptor 2 (BMPR2) gene, the aim of this study was to investigate whether this association might also be found in patients with IPH. Twenty-three samples belonging to 21 unrelated caucasian patients with IPH followed in the hepatic haemodynamic laboratory of the Hospital Clinic in Barcelona were included in the study. All patients were studied for the entire open reading frame and splice site of the BMPR2 gene by direct sequencing and multiple ligation probe amplification (MLPA) in order to detect large deletions/duplications. None of the 23 patients had pulmonary artery hypertension. Four patients presented one single nucleotide polymorphism (SNP) in intron 5, four patients had a SNP in exon 12 and a SNP in exon 1 was found in two cases. Two patients had both intron 5 and exon 12 polymorphisms. All SNPs were previously described. Except for these three SNPs, neither mutations nor rearrangements have been identified in the BMPR2 gene in this population. We did not detect mutations or rearrangements in the coding region of the BMPR2 gene in our patients with IPH. These findings suggest that, in contrast to IPAH, mutations in BMPR2 are not involved in the pathogenesis of IPH.
Resumo:
Oxidized low-density lipoprotein (oxLDL) induced-apoptosis of vascular cells may participate in plaque instability and rupture. We have previously shown that vascular smooth muscle cells (VSMC) stably expressing caveolin-1 were more susceptible to oxLDL-induced apoptosis than VSMC expressing lower level of caveolin-1, and this was correlated with enhanced Ca(2+) entry and pro-apoptotic events. In this study we aimed to identify the molecular events involved in oxLDL-induced Ca(2+) influx and their regulation by the structural protein caveolin-1. In VSMC, transient receptor potential canonical-1 (TRPC1) silencing by ARN interference, prevents the Ca(2+) influx and reduces the toxicity induced by oxLDL. Moreover, caveolin-1 silencing induces concomitant decrease of TRPC1 expression and reduces oxLDL-induced-apoptosis of VSMC. OxLDL enhanced the cell surface expression of TRPC1, as shown by biotinylation of cell surface proteins, and induced TRPC1 translocation into caveolar compartment, as assessed by subcellular fractionation. OxLDL-induced TRPC1 translocation was dependent on actin cytoskeleton and associated with a dramatic rise of 7-ketocholesterol (a major oxysterol in oxLDL) into caveolar membranes, whereas the caveolar content of cholesterol was unchanged. Altogether, the reported results show that TRPC1 channels play a role in Ca(2+) influx and Ca(2+) homeostasis deregulation that mediate apoptosis induced by oxLDL. These data also shed new light on the role of caveolin-1 and caveolar compartment as important regulators of TRPC1 trafficking to the plasma membrane and apoptotic processes that play a major role in atherosclerosis.
Resumo:
G(M1)-gangliosidosis is a lysosomal storage disorder caused by a deficiency of ss-galactosidase activity. Human GM1-gangliosidosis has been classified into three forms according to the age of clinical onset and specific biochemical parameters. In the present study, a canine model for type II late infantile human GM1-gangliosidosis was investigated 'in vitro' in detail. For a better understanding of the molecular pathogenesis underlying G(M1)-gangliosidosis the study focused on the analysis of the molecular events and subsequent intracellular protein trafficking of beta-galactosidase. In the canine model the genetic defect results in exclusion or inclusion of exon 15 in the mRNA transcripts and to translation of two mutant precursor proteins. Intracellular localization, processing and enzymatic activity of these mutant proteins were investigated. The obtained results suggested that the beta-galactosidase C-terminus encoded by exons 15 and 16 is necessary for correct C-terminal proteolytic processing and enzyme activity but does not affect the correct routing to the lysosomes. Both mutant protein precursors are enzymatically inactive, but are transported to the lysosomes clearly indicating that the amino acid sequences encoded by exons 15 and 16 are necessary for correct folding and association with protective protein/cathepsin A, whereas the routing to the lysosomes is not influenced. Thus, the investigated canine model is an appropriate animal model for the human late infantile form and represents a versatile system to test gene therapeutic approaches for human and canine G(M1)-gangliosidosis.
Resumo:
In several forms of beta-thalassemia, mutations in the second intron of the beta-globin gene create aberrant 5' splice sites and activate a common cryptic 3' splice site upstream. As a result, the thalassemic beta-globin pre-mRNAs are spliced almost exclusively via the aberrant splice sites leading to a deficiency of correctly spliced beta-globin mRNA and, consequently, beta-globin. We have designed a series of vectors that express modified U7 snRNAs containing sequences antisense to either the aberrant 5' or 3' splice sites in the IVS2-705 thalassemic pre-mRNA. Transient expression of modified U7 snRNAs in a HeLa cell line stably expressing the IVS2-705 beta-globin gene restored up to 65% of correct splicing in a sequence-specific and dose-dependent manner. Cell lines that stably coexpressed IVS2-705 pre-mRNA and appropriately modified U7 snRNA exhibited up to 55% of permanent restoration of correct splicing and expression of full-length beta-globin protein. This novel approach provides a potential alternative to gene replacement therapies.