158 resultados para ADVANCED COLORECTAL-CANCER
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
AIM: The mTOR-inhibitor rapamycin has shown antitumor activity in various tumors. Bedside observations have suggested that rapamycin may be effective as a treatment for colorectal carcinomatosis. METHODS: We established an orthotopic syngenic model by transplanting CT26 peritoneal tumors in Balb/C mice and an orthotopic xenograft model by transplanting SW620 peritoneal tumors in nu/nu mice. Expression levels of tissue inhibitor of matrix-metalloproteinases 1 (TIMP-1) in the tumor and serum was determined by enzyme-linked immunosorbent assay. RESULTS: Rapamycin significantly suppressed growth of syngenic and xenografted peritoneal tumors. The effect was similar with intraperitoneal or oral rapamycin administration. Tumor suppression was further enhanced when rapamycin was combined with 5-fluorouracil and/or oxaliplatin. The combination treatment showed no acute toxicity. TIMP-1 serum levels correlated well (CC = 0.75; P < 0.01) with rapamycin treatment. CONCLUSIONS: Rapamycin suppressed advanced stage colorectal cancer, even with oral administration. Combining rapamycin with current chemotherapy regimens significantly increased antitumor efficacy without apparent toxicity. The treatment efficacy correlated with serum TIMP-1 levels, suggesting its potential as a surrogate marker in future clinical trials.
Resumo:
Chemotherapy for advanced colorectal cancer leads to improved survival; however, predictors of response to systemic treatment are not available. Genomic and epigenetic alterations of the gene encoding transcription factor AP-2 epsilon (TFAP2E) are common in human cancers. The gene encoding dickkopf homolog 4 protein (DKK4) is a potential downstream target of TFAP2E and has been implicated in chemotherapy resistance. We aimed to further evaluate the role of TFAP2E and DKK4 as predictors of the response of colorectal cancer to chemotherapy.
Resumo:
In colorectal cancer, tumor budding at the invasive front (peritumoral budding) is an established prognostic parameter and decreased in mismatch repair-deficient tumors. In contrast, the clinical relevance of tumor budding within the tumor center (intratumoral budding) is not yet known. The aim of the study was to determine the correlation of intratumoral budding with peritumoral budding and mismatch repair status and the prognostic impact of intratumoral budding using 2 independent patient cohorts. Following pancytokeratin staining of whole-tissue sections and multiple-punch tissue microarrays, 2 independent cohorts (group 1: n = 289; group 2: n = 222) with known mismatch repair status were investigated for intratumoral budding and peritumoral budding. In group 1, intratumoral budding was strongly correlated to peritumoral budding (r = 0.64; P < .001) and less frequent in mismatch repair-deficient versus mismatch repair-proficient cases (P = .177). Sensitivity and specificity for lymph node positivity were 72.7% and 72.1%. In mismatch repair-proficient cancers, high-grade intratumoral budding was associated with right-sided location (P = .024), advanced T stage (P = .001) and N stage pN (P < .001), vascular invasion (P = .041), infiltrating tumor margin (P = .003), and shorter survival time (P = .014). In mismatch repair-deficient cancers, high intratumoral budding was linked to higher tumor grade (P = .004), vascular invasion (P = .009), infiltrating tumor margin (P = .005), and more unfavorable survival time (P = .09). These associations were confirmed in group 2. High-grade intratumoral budding was a poor prognostic factor in univariate (P < .001) and multivariable analyses (P = .019) adjusting for T stage, N stage distant metastasis, and adjuvant therapy. These preliminary results on 511 patients show that intratumoral budding is an independent prognostic factor, supporting the future investigation of intratumoral budding in larger series of both preoperative and postoperative rectal and colon cancer specimens.
Resumo:
Objective: In 2011, the term “intratumoral budding, ITB” was used to describe the presence of tumor buds within the main tumor body and was correlated to worse clinical outcome in colorectal cancer patients. Here, we further elucidate the potential clinical role of ITB in pre-operative biopsies using pan-cytokeratin stained tissues and a quantitative scoring system. Method: 139 pre-operative biopsies from patients with colorectal cancer underwent immunohistochemistry for pancytokeratin (AE1/AE3). ITB were counted in the area of densest budding (40×) and classified as high-grade when >10 buds/HPF were observed based on receiver operating characteristic (ROC) curve analysis. Results: High-grade ITB occurred in 26.6 % of cases and was associated with right-sided tumor location (p=0.0356), more advanced pT (p=0.0198) and pN (p<0.0001) classifications, distant metastasis (p=0.0164), higher tumor grade (p=0.0037) and lymphatic invasion (p=0.0445). The specificity and positive predictive value for lymph node metastasis was 86.7 % and 75.6 %, respectively. Disease-free survival was significantly worse in patients with high-grade ITB (5-year survival=25 %) in comparison to patients with low-grade ITB (5-year survival=55 %) (p=0.0157). Conclusion: The assessment of ITB in pre-operative biopsies is predictive of local and distant metastasis in corresponding resections and should be considered in daily management of colorectal cancer patients.
Resumo:
Background: Approximately 20% of all colorectal cancers are hypothesized to arise from the "serrated pathway" characterized by mutation in BRAF, high-level CpG Island Methylator Phenotype, and microsatellite instability/mismatch repair (MMR)-deficiency. MMR-deficient cancers show frequent losses of Cdx2, a homeodomain transcription factor. Here, we determine the predictive value of Cdx2 expression for MMR-deficiency and investigate changes in expression between primary cancers and matched lymph node metastases. Methods: Immunohistochemistry for Cdx2, Mlh1, Msh2, Msh6, and Pms2 was performed on whole tissue sections from 201 patients with primary colorectal cancer and 59 cases of matched lymph node metastases. Receiver operating characteristic curve analysis and Area under the Curve (AUC) were investigated; association of Cdx2 with clinicopathological features and patient survival was carried out. Results: Loss of Cdx2 expression was associated with higher tumor grade (p = 0.0002), advanced pT (p = 0.0166), and perineural invasion (p = 0.0228). Cdx2 loss was an unfavorable prognostic factor in univariate (p = 0.0145) and multivariate [p = 0.0427; HR (95% CI): 0.58 (0.34-0.98)] analysis. The accuracy (AUC) for discriminating MMR-proficient and - deficient cancers was 87% [OR (95% CI): 0.96 (0.95-0.98); p < 0.0001]. Specificity and negative predictive value for MMR-deficiency was 99.1 and 96.3%. One hundred and seventy-four patients had MMR-proficient cancers, of which 60 (34.5%) showed Cdx2 loss. Cdx2 loss in metastases was related to MMR-deficiency (p < 0.0001). There was no difference in expression between primary tumors and matched metastases. Conclusion: Loss of Cdx2 is a sensitive and specific predictor of MMR-deficiency, but is not limited to these tumors, suggesting that events "upstream" of the development of microsatellite instability may impact Cdx2 expression.
Resumo:
Colorectal cancer is a heterogeneous disease at the histomorphological, clinical and molecular level. Approximately 20% of cases may progress through the "serrated" pathway characterized by BRAF mutation and high-level CpG Island Methylator Phenotype (CIMP). A large subgroup are additionally microsatellite instable (MSI) and demonstrate significant loss of tumor suppressor Cdx2. The aim of this study is to determine the specificity of Cdx2 protein expression and CpG promoter hypermethylation for BRAF(V600E) and high-level CIMP in colorectal cancer. Cdx2, Mlh1, Msh2, Msh6, and Pms2 were analyzed by immunohistochemistry using a multi-punch tissue microarray (TMA; n = 220 patients). KRAS and BRAF(V600E) mutation analysis, CDX2 methylation and CIMP were investigated. Loss of Cdx2 was correlated with larger tumor size (P = 0.0154), right-sided location (P = 0.0014), higher tumor grade (P < 0.0001), more advanced pT (P = 0.0234) and lymphatic invasion (P = 0.0351). Specificity was 100% for mismatch repair (MMR)-deficiency (P < 0.0001), 92.2% (P < 0.0001) for BRAF(V600E) and 91.8% for CIMP-high. Combined analysis of BRAF(V600E) /CIMP identified Cdx2 loss as sensitive (80%) and specific (91.5%) for mutation/high status. These results were validated on eight well-established colorectal cancer cell lines. CDX2 methylation correlated with BRAF(V600E) (P = 0.0184) and with Cdx2 protein loss (P = 0.0028). These results seem to indicate that Cdx2 may play a role in the serrated pathway to colorectal cancer as underlined by strong relationships with BRAF(V600E) , CIMP-high and MMR-deficiency. Whether this protein can only be used as a "surrogate" marker, or is functionally involved in the progression of these tumors remains to be elucidated.
Resumo:
Tumor budding in colorectal cancer is likened to an epithelial-mesenchymal transition (EMT) characterized predominantly by loss of E-cadherin and up-regulation of E-cadherin repressors like TWIST1 and TWIST2. Here we investigate a possible epigenetic link between TWIST proteins and the tumor budding phenotype. TWIST1 and TWIST2 promoter methylation and protein expression were investigated in six cell lines and further correlated with tumor budding in patient cohort 1 (n = 185). Patient cohort 2 (n = 112) was used to assess prognostic effects. Laser capture microdissection (LCM) of tumor epithelium and stroma from low- and high-grade budding cancers was performed. In colorectal cancers, TWIST1 and TWIST2 expression was essentially restricted to stromal cells. LCM results of a high-grade budding case show positive TWIST1 and TWIST2 stroma and no methylation, while the low-grade budding case was characterized by negative stroma and strong hypermethylation. TWIST1 stromal cell staining was associated with adverse features like more advanced pT (p = 0.0044), lymph node metastasis (p = 0.0301), lymphatic vessel invasion (p = 0.0373), perineural invasion (p = 0.0109) and worse overall survival time (p = 0.0226). Stromal cells may influence tumor budding in colorectal cancers through expression of TWIST1. Hypermethylation of the tumor stroma may represent an alternative mechanism for regulation of TWIST1.
Resumo:
Histomorphological features of colorectal cancers (CRC) represent valuable prognostic indicators for clinical decision making. The invasive margin is a central feature for prognostication shaped by the complex processes governing tumor-host interaction. Assessment of the tumor border can be performed on standard paraffin sections and shows promise for integration into the diagnostic routine of gastrointestinal pathology. In aggressive CRC, an extensive dissection of host tissue is seen with loss of a clear tumor-host interface. This pattern, termed "infiltrative tumor border configuration" has been consistently associated with poor survival outcome and early disease recurrence of CRC-patients. In addition, infiltrative tumor growth is frequently associated with presence of adverse clinicopathological features and molecular alterations related to aggressive tumor behavior including BRAFV600 mutation. In contrast, a well-demarcated "pushing" tumor border is seen frequently in CRC-cases with low risk for nodal and distant metastasis. A pushing border is a feature frequently associated with mismatch-repair deficiency and can be used to identify patients for molecular testing. Consequently, assessment of the tumor border configuration as an additional prognostic factor is recommended by the AJCC/UICC to aid the TNM-classification. To promote the assessment of the tumor border configuration in standard practice, consensus criteria on the defining features and method of assessment need to be developed further and tested for inter-observer reproducibility. The development of a standardized quantitative scoring system may lay the basis for verification of the prognostic associations of the tumor growth pattern in multivariate analyses and clinical trials. This article provides a comprehensive review of the diagnostic features, clinicopathological associations, and molecular alterations associated with the tumor border configuration in early stage and advanced CRC.
Resumo:
BACKGROUND Metastasis of colorectal cancer (CRC) is directly linked to patient survival. We previously identified the novel gene Metastasis Associated in Colon Cancer 1 (MACC1) in CRC and demonstrated its importance as metastasis inducer and prognostic biomarker. Here, we investigate the geographic expression pattern of MACC1 in colorectal adenocarcinoma and tumor buds in correlation with clinicopathological and molecular features for improvement of survival prognosis. METHODS We performed geographic MACC1 expression analysis in tumor center, invasive front and tumor buds on whole tissue sections of 187 well-characterized CRCs by immunohistochemistry. MACC1 expression in each geographic zone was analyzed with Mismatch repair (MMR)-status, BRAF/KRAS-mutations and CpG-island methylation. RESULTS MACC1 was significantly overexpressed in tumor tissue as compared to normal mucosa (p < 0.001). Within colorectal adenocarcinomas, a significant increase of MACC1 from tumor center to front (p = 0.0012) was detected. MACC1 was highly overexpressed in 55% tumor budding cells. Independent of geographic location, MACC1 predicted advanced pT and pN-stages, high grade tumor budding, venous and lymphatic invasion (p < 0.05). High MACC1 expression at the invasive front was decisive for prediction of metastasis (p = 0.0223) and poor survival (p = 0.0217). The geographic pattern of MACC1 did not correlate with MMR-status, BRAF/KRAS-mutations or CpG-island methylation. CONCLUSION MACC1 is differentially expressed in CRC. At the invasive front, MACC1 expression predicts best aggressive clinicopathological features, tumor budding, metastasis formation and poor survival outcome.
Resumo:
This study investigated whether nutritional risk scores applied at hospital admission predict mortality and complications after colorectal cancer surgery.
Resumo:
Background Interactions between CXCR4 and its ligand CXCL12 have been shown to be involved in cancer progression in colorectal cancer (CRC). We performed a comparative CXCL12/CXCR4 expression analysis and assessed the effect of external CXCL12 stimulation on migration of CRC cells without and with CXCR4 inhibition. Methods Expression of CXCL12/CXCR4 was assessed by quantitative real-time PCR, ELISA and immunohistochemistry in resection specimens of 50 CRC patients as well as in the corresponding normal tissues and in three human CRC cell lines with different metastatic potential (Caco-2, SW480 and HT-29). Migration assays were performed after stimulation with CXCL12 and CXCR4 was inhibited by siRNA and neutralizing antibodies. Results In CRC tissues CXCL12 was significantly down-regulated and CXCR4 was significantly up-regulated compared to the corresponding normal tissues. In cell lines CXCR4 was predominantly expressed in SW480 and less pronounced in HT-29 cells. CXCL12 was only detectable in Caco-2 cells. CXCL12 stimulation had no impact on Caco-2 cells but significantly increased migration of CXCR4 bearing SW480 and HT-29 cells. This effect was significantly abrogated by neutralizing anti-CXCR4 antibody as well as by CXCR4 siRNAs (P < 0.05). Conclusions CXCR4 expression was up-regulated in CRC and CXCL12 stimulation increased migration in CXCR4 bearing cell lines. Migration was inhibited by both neutralizing CXCR4 antibodies and CXCR4 siRNAs. Thus, the expression and functionality of CXCR4 might be associated with the metastatic potential of CRC cells and CXCL12/CXCR4 interactions might therefore constitute a promising target for specific treatment interventions.
Resumo:
There is no standard treatment for patients with locally advanced esophageal carcinoma without systemic metastasis in whom surgery is no longer considered a reasonable option.
Resumo:
EUS response assessment in patients with locally advanced esophageal cancer undergoing neoadjuvant chemoradiation therapy (CRT) is limited by disintegration of the involved anatomic structures.