29 resultados para ADULT MALE-VOLUNTEERS
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Standard toxicity tests with high levels of D-tagatose showed a reversible enlargement of the liver in Sprague-Dawley rats without increase of liver enzymes. The present study tests the hypotheses that partial substitution of dietary sucrose by D-tagatose for 28 days increases the volume of human liver and the concentration of liver glycogen. Twelve healthy, male volunteers were studied in a double-blind crossover study with ingestion of D-tagatose (3x15 g daily) and placebo (sucrose, 3x15 g daily) for periods of 28 days each. Liver volume and glycogen concentration have been determined by magnetic resonance (MR) imaging and spectroscopy, which were accompanied by routine medical examinations. MR examinations before and after the treatments revealed no effects (P>0.05) of treatment, period, or subject for changes in liver volume or glycogen concentration. A steady increase of liver volumes, independent of the D-tagatose or placebo intake, has been observed over the study in parallel with a slight increase in body weight. The treatment with D-tagatose was not associated with clinically relevant changes of the examined clinico-chemical and hematological parameters, including liver enzymes and uric acid.
Resumo:
Objective: To assess the prevalence of lateral incisor agenesis impacted canines and supernumerary teeth in a young adult male population. Materials and Methods: The panoramic radiographs of 1745 military students (mean age: 18.6 ± 0.52 years) who attended the Center of Aviation Medicine of the Armed Forces of Greece during the period 1997-2011 were initially analyzed for lateral incisor agenesis by two observers. After exclusion of the known orthodontic cases, a subgroup of 1636 examinees (mean age: 18.6 ± 0.44 years) was evaluated for canine impaction and supernumerary teeth. Results: Twenty-eight missing lateral incisors were observed in 22 military students, indicating an incidence of 1.3% in the investigated population. No lateral incisor agenesis was detected in the mandibular arch. A prevalence rate of 0.8% was determined for canine impaction in the sample of young adults. The majority of impacted teeth (86.7%) were diagnosed in the maxillary arch. Thirty-five supernumerary teeth were observed in 24 examinees (prevalence rate: 1.5%). The ratio of supernumerary teeth located in the maxilla versus the mandible was 2.2:1. The most common type of supernumerary tooth was the upper distomolar. Conclusion: The prevalence of lateral incisor agenesis, canine impaction, and supernumerary teeth ranged from 0.8 to 1.5% in the sample of male Greek military students.
Resumo:
Gene therapy may represent a promising alternative strategy for cardiac muscle regeneration. In vivo electroporation, a physical method of gene transfer, has recently evolved as an efficient method for gene transfer. In the current study, we investigated the efficiency and safety of a protocol involving in vivo electroporation for gene transfer to the beating heart. Adult male rats were anesthetised and the heart exposed through a left thoracotomy. Naked plasmid DNA was injected retrograde into the transiently occluded coronary sinus before the electric pulses were applied. Animals were sacrificed at specific time points and gene expression was detected. Results were compared to the group of animals where no electric pulses were applied. No post-procedure arrhythmia was observed. Left ventricular function was temporarily altered only in the group were high pulses were applied; CK-MB (Creatine kinase) and TNT (Troponin T) were also altered only in this group. Histology showed no signs of toxicity. Gene expression was highest at day one. Our results provide evidence that in vivo electroporation with an optimized protocol is a safe and effective tool for nonviral gene delivery to the beating heart. This method may be promising for clinical settings especially for perioperative gene delivery.
Resumo:
The factors that influence Leydig cell activity currently include peptides such as neuropeptide Y (NPY). In this work we investigated the ability of this compound, injected directly into the testes of adult male rats, to alter testosterone (T) release into the general circulation. At a 5μg/kg dose administered 1h prior to challenge with human chorionic gonadotropin (hCG, 1.0 U/kg, iv), NPY significantly (P<0.01) blunted the T response to this gonadotropin. The inhibitory effect of NPY was observed in animals pretreated with an antagonist to gonadotropin-releasing hormone or not, indicating that the decrease in plasma T found was most likely independent of pituitary luteinizing hormone. However, testicular levels of steroidogenic acute regulatory (STAR) protein or translocator protein (TSPO) in the Leydig cells did not exhibit consistent changes, which suggested that other mechanisms mediated the blunted T response to hCG. We therefore used autoradiography and immunohistochemistry methodologies to identify NPY receptors in the testes, and found them primarily located on blood vessels. Competition studies further identified these receptors as being Y(1), a subtype previously reported to modulate the vasoconstrictor effect of NPY. The absence of significant changes in STAR and TSPO levels, as well as the absence of Y(1) receptors on Leydig cells, suggest that NPY-induced decreases in T release is unlikely to represent a direct effect of NPY on these cells. Rather, the very high expression levels of Y(1) found in testicular vessels supports the concept that NPY may alter gonadal activity, at least in part, through local vascular impairment of gonadotropin delivery to, and/or blunted T secretion from, Leydig cells.
Resumo:
The literature contains many case reports of planned and complex suicides, which combine various methods to commit suicide. In this article, we present the anomalous suicide of an adult male by strangulation with a belt and simultaneous ingestion of plaster. The specific circumstances of the case are described and relevant literature is briefly reviewed. This case vignette illustrates one example of the wide ranging methods employed in suicides and may represent the first reported case of a fatal complex suicide involving self-strangulation and plaster ingestion. Knowledge of varied and sometimes unusual suicide methods is important to the forensic investigator to prevent unnecessary criminal investigation and to reliably and confidently establish manner and cause of death.
Resumo:
(11)C-ABP-688 is a selective tracer for the mGluR5 receptor. Its kinetics is fast and thus favourable for an equilibrium approach to determine receptor-related parameters. The purpose of this study was to test the hypothesis that the pattern of the (11)C-ABP688 uptake using a bolus-plus-infusion (B/I) protocol at early time points corresponds to the perfusion and at a later time point to the total distribution volume. METHODS: A bolus and a B/I study (1 h each) was performed in five healthy male volunteers. With the B/I protocol, early and late scans were normalized to gray matter, cerebellum and white matter. The same normalization was done on the maps of the total distribution volume (Vt) and K(1) which were calculated in the study with bolus only injection and the Logan method (Vt) and a two-tissue compartment model (K(1)). RESULTS: There was an excellent correlation close to the identity line between the pattern of the late uptake in the B/I study and Vt of the bolus-only study for all three normalizations. The pattern of the early uptake in the B/I study correlated well with the K(1) maps, but only when normalized to gray matter and cerebellum, not to white matter. CONCLUSION: It is demonstrated that with a B/I protocol the (11)C-ABP688 distribution in late scans reflects the pattern of the total distribution volume and is therefore a measure for the density pattern of mGluR5. The early scans following injection are related to blood flow, although not in a fully quantitative manner. The advantage of the B/I protocol is that no arterial blood sampling is required, which is advantageous in clinical studies.
Resumo:
Intravenous (IV) Δ9-tetrahydrocannabinol (THC) induces transient psychotic symptoms in healthy subjects and in schizophrenic patients, but the psychotomimetic mechanism is unknown. One possibility is that THC stimulates dopamine (DA) release in the striatum. In this study we tested whether IV THC led to an increase in striatal DA release compared to placebo. We also investigated whether DA release and positive psychotic symptoms were related. Eleven healthy male volunteers completed two 123I-iodobenzamide ([123I]IBZM) single photon emission tomography (SPET) sessions and received IV THC (2.5 mg) or placebo in a randomized counterbalanced order, under double-blind conditions. Analysable data were obtained from nine participants. The Positive and Negative Syndrome Scale (PANSS) was used to rate psychotomimetic effects. Striatal binding index values were calculated using the occipital cortex as a reference region. Both the PANSS positive and general symptoms increased significantly at 30 min following IV THC. There were no significant differences in binding index in the caudate or putamen under THC compared to placebo conditions. Positive psychotic symptoms and DA release were unrelated. THC did not lead to a significant increase in DA release even though the dose was sufficient for participants to have psychotic symptoms. These findings do not support a central role for striatal DA in THC-elicited psychosis.
Resumo:
Introduction Adequate migration and differentiation of mesenchymal stem cells is essential for regeneration of large bone defects. To achieve this, modern graft materials are becoming increasingly important. Among them, electrospun nanofiber scaffolds are a promising approach, because of their high physical porosity and potential to mimic the extracellular matrix (ECM). Materials and Methods The objective of the present study was to examine the impact of electrospun PLLA nanofiber scaffolds on bone formation in vivo, using a critical size rat calvarial defect model. In addition we analyzed whether direct incorporation of bone morphogenetic protein 2 (BMP-2) into nanofibers could enhance the osteoinductivity of the scaffolds. Two critical size calvarial defects (5 mm) were created in the parietal bones of adult male Sprague-Dawley rats. Defects were either (1) left unfilled, or treated with (2) bovine spongiosa, (3) PLLA scaffolds alone or (4) PLLA/BMP-2 scaffolds. Cranial CT-scans were taken at fixed intervals in vivo. Specimens obtained after euthanasia were processed for histology, histomorphometry and immunostaining (Osteocalcin, BMP-2 and Smad5). Results PLLA scaffolds were well colonized with cells after implantation, but only showed marginal ossification. PLLA/BMP-2 scaffolds showed much better bone regeneration and several ossification foci were observed throughout the defect. PLLA/BMP-2 scaffolds also stimulated significantly faster bone regeneration during the first eight weeks compared to bovine spongiosa. However, no significant differences between these two scaffolds could be observed after twelve weeks. Expression of osteogenic marker proteins in PLLA/BMP-2 scaffolds continuously increased throughout the observation period. After twelve weeks osteocalcin, BMP-2 and Smad5 were all significantly higher in the PLLA/BMP-2 group than in all other groups. Conclusion Electrospun PLLA nanofibers facilitate colonization of bone defects, while their use in combination with BMP-2 also increases bone regeneration in vivo and thus combines osteoconductivity of the scaffold with the ability to maintain an adequate osteogenic stimulus.
Resumo:
Although heart donation after cardiac death (DCD) could greatly improve graft availability, concerns regarding warm ischemic damage typically preclude transplantation. Improving tolerance to warm ischemia may thus open a window of opportunity for DCD hearts. We investigated the hypothesis that, compared with normothermia, mild hypothermia (32° C) initiated after ischemic onset improves cardiac functional recovery upon reperfusion. Isolated, working hearts from adult, male Wistar rats underwent global, no-flow ischemia, and reperfusion (n = 28). After ischemic onset, temperature was maintained at either 37° C for 20 or 30 min or reduced to 32° C for 40, 50, or 60 min. Recovery was measured after 60-min reperfusion. Following normothermic ischemia, recovery of rate-pressure product (RPP; per cent of preischemic value) was almost complete after 20-min ischemia (97 ± 9%), whereas no recovery was detectable after 30-min ischemia. After mildly hypothermic ischemia (32° C), RPP also recovered well after 40 min (86 ± 4%). Markers of metabolism and necrosis were similar in 37° C/20 min and 32° C/40 min groups. Simple reduction in cardiac temperature by a few degrees after the onset of global ischemia dramatically prolongs the interval during which the heart remains resistant to functional deterioration. Preservation of hemodynamic function is associated with improved metabolic recovery and reduced necrosis. The application of mild hypothermia may be a simple first step towards development of clinical protocols for DCD heart recovery.
Resumo:
Background PCSK9 (Proprotein Convertase Subtilisin Kexin type 9) is a circulating protein that promotes hypercholesterolemia by decreasing hepatic LDL receptor protein. Under non interventional conditions, its expression is driven by sterol response element binding protein 2 (SREBP2) and follows a diurnal rhythm synchronous with cholesterol synthesis. Plasma PCSK9 is associated to LDL-C and to a lesser extent plasma triglycerides and insulin resistance. We aimed to verify the effect on plasma PCSK9 concentrations of dietary interventions that affect these parameters. Methods We performed nutritional interventions in young healthy male volunteers and offspring of type 2 diabetic (OffT2D) patients that are more prone to develop insulin resistance, including: i) acute post-prandial hyperlipidemic challenge (n=10), ii) 4 days of high-fat (HF) or high-fat/high-protein (HFHP) (n=10), iii) 7 (HFruc1, n=16) or 6 (HFruc2, n=9) days of hypercaloric high-fructose diets. An acute oral fat load was also performed in two patients bearing the R104C-V114A loss-of-function (LOF) PCSK9 mutation. Plasma PCSK9 concentrations were measured by ELISA. For the HFruc1 study, intrahepatocellular (IHCL) and intramyocellular lipids were measured by 1H magnetic resonance spectroscopy. Hepatic and whole-body insulin sensitivity was assessed with a two-step hyperinsulinemic-euglycemic clamp (0.3 and 1.0 mU.kg-1.min-1). Findings HF and HFHP short-term diets, as well as an acute hyperlipidemic oral load, did not significantly change PCSK9 concentrations. In addition, post-prandial plasma triglyceride excursion was not altered in two carriers of PCSK9 LOF mutation compared with non carriers. In contrast, hypercaloric 7-day HFruc1 diet increased plasma PCSK9 concentrations by 28% (p=0.05) in healthy volunteers and by 34% (p=0.001) in OffT2D patients. In another independent study, 6-day HFruc2 diet increased plasma PCSK9 levels by 93% (p<0.0001) in young healthy male volunteers. Spearman’s correlations revealed that plasma PCSK9 concentrations upon 7-day HFruc1 diet were positively associated with plasma triglycerides (r=0.54, p=0.01) and IHCL (r=0.56, p=0.001), and inversely correlated with hepatic (r=0.54, p=0.014) and whole-body (r=−0.59, p=0.0065) insulin sensitivity. Conclusions Plasma PCSK9 concentrations vary minimally in response to a short term high-fat diet and they are not accompanied with changes in cholesterolemia upon high-fructose diet. Short-term high-fructose intake increased plasma PCSK9 levels, independent on cholesterol synthesis, suggesting a regulation independent of SREBP-2. Upon this diet, PCSK9 is associated with insulin resistance, hepatic steatosis and plasma triglycerides.
Resumo:
In zebrafish, two isoforms of the aromatase gene exist, namely cyp19a1 and cyp19a2, expressed predominantly in the gonads and brain, respectively. In this study, we focus on characterizing the specificity of antibodies against the aromatase isoforms, and on (xeno)estrogen-induced changes of individual cyp19a2 mRNA concentrations in the brains of adult male zebrafish. Among three polyclonal antibodies studied, the one against CYP19A2 was found to be specific in Western blots and immunohistochemistry. Real-time RT-PCR analyses revealed strong interindividual variation of cyp19a2 levels in the brains of adult male zebrafish. After a three-week-exposure to (xeno)estrogens, mean values of cyp19a2 mRNA levels tended to increase, with significant induction at 200 ng 17beta-estradiol/L, but interindividual variation of cyp19a2 expression was maintained.
Resumo:
BACKGROUND: High fructose consumption is suspected to be causally linked to the epidemics of obesity and metabolic disorders. In rodents, fructose leads to insulin resistance and ectopic lipid deposition. In humans, the effects of fructose on insulin sensitivity remain debated, whereas its effect on ectopic lipids has never been investigated. OBJECTIVE: We assessed the effect of moderate fructose supplementation on insulin sensitivity (IS) and ectopic lipids in healthy male volunteers (n = 7). DESIGN: IS, intrahepatocellular lipids (IHCL), and intramyocellular lipids (IMCL) were measured before and after 1 and 4 wk of a high-fructose diet containing 1.5 g fructose . kg body wt(-1) . d(-1). Adipose tissue IS was evaluated from nonesterified fatty acid suppression, hepatic IS from suppression of hepatic glucose output (6,6-2H2-glucose), and muscle IS from the whole-body glucose disposal rate during a 2-step hyperinsulinemic euglycemic clamp. IHCL and IMCL were measured by 1H magnetic resonance spectroscopy. RESULTS: Fructose caused significant (P < 0.05) increases in fasting plasma concentrations of triacylglycerol (36%), VLDL-triacylglycerol (72%), lactate (49%), glucose (5.5%), and leptin (48%) without any significant changes in body weight, IHCL, IMCL, or IS. IHCL were negatively correlated with triacylglycerol after 4 wk of the high-fructose diet (r = -0.78, P < 0.05). CONCLUSION: Moderate fructose supplementation over 4 wk increases plasma triacylglycerol and glucose concentrations without causing ectopic lipid deposition or insulin resistance in healthy humans.
Resumo:
OBJECTIVE: To assess the effect of a possible interaction between dietary fat and physical inactivity on whole-body insulin sensitivity and intramyocellular lipids (IMCLs). RESEARCH DESIGN AND METHODS: Eight healthy male volunteers were studied on two occasions. After 2 days of an equilibrated diet and moderate physical activity, participants remained inactive (bed rest) for 60 h and consumed either a high-saturated fat (45% fat, of which approximately 60% was saturated fat [BR-HF]) or a high-carbohydrate (70% carbohydrate [BR-HCHO]) diet. To evaluate the effect of a high-fat diet alone, six of the eight volunteers were restudied after a 2-day equilibrated diet followed by 60 h on a high-saturated fat diet and controlled physical activity (PA-HF). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp and IMCL concentrations by (1)H-magnetic resonance spectroscopy. RESULTS: Insulin-mediated glucose disposal was decreased by BR-HF condition (-24 +/- 6%, P < 0.05) but did not change with BR-HCHO (+19 +/- 10%, NS). BR-HF and BR-HCHO increased IMCL levels (+32 +/- 7%, P < 0.05 and +17 +/- 8%, P < 0.0011, respectively). Although the increase in IMCL levels with PA-HF (+31 +/- 19%, P = 0.12) was similar to that during BR-HF, insulin-mediated glucose disposal (-7 +/- 9%, NS) was not decreased. CONCLUSIONS: These data indicate that physical inactivity and a high-saturated fat diet may interact to reduce whole-body insulin sensitivity. IMCL content was influenced by dietary lipid and physical inactivity but was not directly associated with insulin resistance.
Resumo:
PURPOSE: To prospectively determine if changes in intrarenal oxygenation during acute unilateral ureteral obstruction can be depicted with blood oxygen level-dependent (BOLD) magnetic resonance (MR) imaging. MATERIALS AND METHODS: The study was approved by the local ethics committee, and written informed consent was obtained from all patients. BOLD MR imaging was performed in 10 male patients (mean age, 45 years +/- 17 [standard deviation]; range, 20-73 years) with a distal unilateral ureteral calculus and in 10 healthy age-matched male volunteers to estimate R2*, which is inversely related to tissue Po(2). R2* values were determined in the cortex and medulla of the obstructed and the contralateral nonobstructed kidneys. To reduce external effects on R2*, the R2* ratio between the medulla and cortex was also analyzed. Statistical analysis was performed with nonparametric rank tests. P < .05 was considered to indicate a significant difference. RESULTS: All patients had significantly lower medullary and cortical R2* values in the obstructed kidney (median R2* in medulla, 10.9 sec(-1) [range, 9.1-14.3 sec(-1)]; median R2* in cortex, 10.4 sec(-1) [range, 9.7-11.3 sec(-1)]) than in the nonobstructed kidney (median R2* in medulla, 17.2 sec(-1) [range, 14.6-23.2 sec(-1)], P = .005; median R2* in cortex, 11.7 sec(-1) [range, 11.0-14.0 sec(-1)], P = .005); values in the obstructed kidneys were also significantly lower than values in the kidneys of healthy control subjects (median R2* in medulla, 16.1 sec(-1) [range, 13.9-18.1 sec(-1)], P < .001; median R2* in cortex, 11.6 sec(-1) [range, 10.5-12.9 sec(-1)], P < .001). R2* ratios in the obstructed kidneys (median, 1.06; range, 0.85-1.27) were significantly lower than those in the nonobstructed kidneys (median, 1.49; range, 1.26-1.71; P = .005) and those in the kidneys of healthy control subjects (median, 1.38; range, 1.23-1.47; P < .001). In contrast, R2* ratios in the nonobstructed kidneys of patients were significantly higher than those in kidneys of healthy control subjects (P = .01). CONCLUSION: Increased oxygen content in the renal cortex and medulla occurs with acute unilateral ureteral obstruction, suggesting reduced function of the affected kidney.