6 resultados para ABRUPT CLIMATE-CHANGE
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
A new, decadally resolved record of the 10Be peak at 41 kyr from the EPICA Dome C ice core (Antarctica) is used to match it with the same peak in the GRIP ice core (Greenland). This permits a direct synchronisation of the climatic variations around this time period, independent of uncertainties related to the ice age-gas age difference in ice cores. Dansgaard-Oeschger event 10 is in the period of best synchronisation and is found to be coeval with an Antarctic temperature maximum. Simulations using a thermal bipolar seesaw model agree reasonably well with the observed relative climate chronology in these two cores. They also reproduce three Antarctic warming events observed between A1 and A2.
Resumo:
Oxygen isotope records show a major climatic reversal at 8.2 ka in Greenland and Europe. Annually laminated sediments from two lakes in Switzerland and Germany were sampled contiguously to assess the response of European vegetation to climate change ca. 8.2 ka with time resolution and precision comparable to those of the Greenland ice cores. The pollen assemblages show pronounced and immediate responses (0–20 yr) of terrestrial vegetation to the climatic change at 8.2 ka. A sudden collapse of Corylus avellana (hazel) was accompanied by the rapid expansion of Pinus (pine), Betula (birch), and Tilia (linden), and by the invasion of Fagus silvatica (beech) and Abies alba (fir). Vegetational changes suggest that climatic cooling reduced drought stress, allowing more drought-sensitive and taller growing species to out-compete Corylus avellana by forming denser forest canopies. Climate cooling at 8.2 ka and the immediate reorganization of terrestrial ecosystems has gone unrecognized by previous pollen studies. On the basis of our data we conclude that the early Holocene high abundance of C. avellana in Europe was climatically caused, and we question the conventional opinion that postglacial expansions of F. silvatica and A. alba were controlled by low migration rates rather than by climate. The close connection between climatic change and vegetational response at a subcontinental scale implies that forecasted global warming may trigger rapid collapses, expansions, and invasions of tree species.
Resumo:
This paper analyses the adaptiveness of the Public Agricultural Extension Services (PAES) to climate change. Existing literature, interviews and group discussions among PAES actors in larger Makueni district, Kenya, provided the data for the analyses. The findings show that the PAES already have various elements of adaptiveness in its policies, approaches and methods of extension provision. However, the hierarchical structure of the PAES does not augur well for self-organisation at local levels of extension provision, especially under conditions of abrupt change which climate change might trigger. Most importantly, adpativeness presupposes adaptive capacity but the lack of resources in terms of funding for extension, limited mobility of extension officers, the low extension staff/farmer ratio, the aging of extension staff and significant dependence on donor funding limits the adaptiveness of the PAES. Accordingly criteria and indicators were identified in literature with which an initial assessement of the adaptiiveneess of PAES was conducted. However this assessment framework needs to be improved and future steps will integrate more specific inputs from actors in PAES in order to make the framework operational.
Resumo:
Lake sediments and pollen, spores and algae from the high-elevation endorheic Laguna Miscanti (22°45′S, 67°45′W, 4140 m a.s.l., 13.5 km2 water surface, 10 m deep) in the Atacama Desert of northern Chile provide information about abrupt and high amplitude changes in effective moisture. Although the lack of terrestrial organic macrofossils and the presence of a significant 14C reservoir effect make radiocarbon dating of lake sediments very difficult, we propose the following palaeoenvironmental history. An initial shallow freshwater lake (ca. 22,000 14C years BP) disappeared during the extremely dry conditions of the Last Glacial Maximum (LGM; 18,000 14C years BP). That section is devoid of pollen. The late-glacial lake transgression started around 12,000 14C years BP, peaked in two phases between ca. 11,000 and <9000 14C years BP, and terminated around 8000 14C years BP. Effective moisture increased more than three times compared to modern conditions (∼200 mm precipitation), and a relatively dense terrestrial vegetation was established. Very shallow hypersaline lacustrine conditions prevailed during the mid-Holocene until ca. 3600 14C years BP. However, numerous drying and wetting cycles suggest frequent changes in moisture, maybe even individual storms during the mid-Holocene. After several humid spells, modern conditions were reached at ca. 3000 14C years BP. Comparison between limnogeological data and pollen of terrestrial plants suggest century-scale response lags. Relatively constant concentrations of long-distance transported pollen from lowlands east of the Andes suggest similar atmospheric circulation patterns (mainly tropical summer rainfall) throughout the entire period of time. These findings compare favorably with other regional paleoenvironmental data.