12 resultados para A. tumida

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

In this study, we evaluated the potential use of entomopathogenic nematodes as a control for the beetle Aethina tumida Murray (Coleoptera: Nitidulidae). In particular, we conducted 1) four screening bioassays to determine nematode (seven species, 10 total strains tested) and application level effects on A. tumida larvae and pupae, 2) a generational persistence bioassay to determine whether single inoculations with nematodes would control multiple generations of A. tumida larvae in treated soil, and 3) a field bioassay to determine whether the nematodes would remain efficacious in the field. In the screening bioassays, nematode efficacy varied significantly by tested nematode and the infective juvenile (IJ) level at which they were applied. Although nematode virulence was moderate in screening bioassays 1-3 (0 - 68% A. tumida mortality), A. tumida mortality approached higher levels in screening bioassay 4 (nearly 100% after 39 d) that suggest suitable applicability of some of the test nematodes as field controls for A. tumida. In the generational persistence bioassay, Steinernema Hobrave Cabanillas, Poinar & Raulston 7-12 strain and Heterorhabditis indica Poinar, Karunaka & David provided adequate A. tumida control for 19 wk after a single soil inoculation (76-94% mortality in A. tumida pupae). In the field bioassay, the same two nematode species also showed high virulence toward pupating A. tumida (88-100%) mortality. Our data suggest that nematode use may be an integral component of an integrated pest management scheme aimed at reducing A. tumida populations in bee colonies to tolerable levels.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Native to sub-Saharan Africa, Aethina tumida Murray (Coleoptera: Nitidulidae) is now an invasive pest of honey bee, Apis mellifera L., colonies in Australia and North America. Knowledge about the introduction (s) of this beetle from Africa into and among the current ranges will elucidate pest populations and invasion pathways and contribute to knowledge of how a parasite expands in new populations. We examined genetic variation in adult beetle samples from the United States, Australia, Canada, and Africa by sequencing a 912-base pair region of the mitochondrial DNA cytochrome c oxidase subunit I gene and screening 10 informative microsatellite loci. One Canadian introduction of small hive beetles can be traced to Australia, whereas the second introduction seems to have come from the United States. Beetles now resident in Australia were of a different African origin than were beetles in North America. North American beetles did not show covariance between two mitochondrial haplotypes and their microsatellite frequencies, suggesting that these beetles have a shared source despite having initial genetic structure within their introduced range. Excellent dispersal of beetles, aided in some cases by migratory beekeeping and the bee trade, seems to lead to panmixis in the introduced populations as well as in Africa.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The transmission of honeybee pathogens by free-flying pests, such as small hive beetles (=SHB), would be independent of bees and beekeepers and thereby constitute a new challenge for pathogen control measures. Here we show that larval and adult SHB become contaminated with Paenibacillus larvae spores when exposed to honeybee brood combs with clinical American foulbrood (=AFB) symptoms in the laboratory. This contamination persists in pupae and newly emerged adults. After exposure to contaminated adult SHB, honeybee field colonies showed higher numbers of P. larvae spores in worker and honey samples after five weeks. Despite these results, the rather low number of P. larvae spores on adult SHB suggests that clinical AFB outbreaks are not likely. However, even small spore numbers can be sufficient to spread P. larvae. Therefore, our data clearly show that SHB are vectors of P. larvae. We suggest considering the role of SHB in AFB control in areas where both pests are established.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Multiple infections of managed honeybee, Apis mellifera, colonies are inevitable due to the ubiquitous ectoparasitic mite Varroa destructor and might be an underlying cause of winter losses. Here we investigated the role of adult small hive beetles, Aethina tumida, alone and in combination with V. destructor for winter losses and for infections with the microsporidian endoparasite Nosema ceranae. We found no significant influence of A. tumida and V destructor alone or in combination on the numbers of N. ceranae spores. Likewise, A. tumida alone had no significant effects on winter losses, which is most likely due to the observed high winter mortality of the adult beetles. Therefore, our data suggest that A. tumida is unlikely to contribute to losses of overwintering honeybee colonies. However, high losses occurred in all groups highly infested with V. destructor, supporting the central role of the mite for colony losses.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Small hive beetles (SHBs) are generalists native to sub-Saharan Africa and reproduce in association with honeybees, bumblebees, stingless bees, fruits and meat. The SHB has recently become an invasive species, and introductions have been recorded from America, Australia, Europe and Asia since 1996. hile SHBs are usually considered a minor pest in Africa, they can cause significant damage to social bee colonies in their new ranges. Potential reasons for differential impact include differences in bee behaviour, climate and release from natural enemies. Here, we provide an overview on biology, distribution, pest status, diagnosis, control and prevention to foster adequate mitigation and stimulate future research. SHBs have become a global threat to both apiculture and wild bee populations, but our knowledge of this pest is still limited, reating demand for more research in all areas of its biology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The small hive beetle, Aethina tumida, is an emerging pest of social bee colonies. A. tumida shows a specialized life style for which olfaction seems to play a crucial role. To better understand the olfactory system of the beetle, we used immunohistochemistry and 3-D reconstruction to analyze brain structures, especially the paired antennal lobes (AL), which represent the first integration centers for odor information in the insect brain. The basic neuroarchitecture of the A. tumida brain compares well to the typical beetle and insect brain. In comparison to other insects, the AL are relatively large in relationship to other brain areas, suggesting that olfaction is of major importance for the beetle. The AL of both sexes contain about 70 olfactory glomeruli with no obvious size differences of the glomeruli between sexes. Similar to all other insects including beetles, immunostaining with an antiserum against serotonin revealed a large cell that projects from one AL to the contralateral AL to densely innervate all glomeruli. Immunostaining with an antiserum against tachykinin-related peptides (TKRP) revealed hitherto unknown structures in the AL. Small TKRP-immunoreactive spherical substructures are in both sexes evenly distributed within all glomeruli. The source for these immunoreactive islets is very likely a group of about 80 local AL interneurons. We offer two hypotheses on the function of such structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Workers from social insect colonies use different defence strategies to combat invaders. Nevertheless, some parasitic species are able to bypass colony defences. In particular, some beetle nest invaders cannot be killed or removed by workers of social bees, thus creating the need for alternative social defence strategies to ensure colony survival. Here we show, using diagnostic radioentomology, that stingless bee workers (Trigona carbonaria) immediately mummify invading adult small hive beetles (Aethina tumida) alive by coating them with a mixture of resin, wax and mud, thereby preventing severe damage to the colony. In sharp contrast to the responses of honeybee and bumblebee colonies, the rapid live mummification strategy of T. carbonaria effectively prevents beetle advancements and removes their ability to reproduce. The convergent evolution of mummification in stingless bees and encapsulation in honeybees is another striking example of co-evolution between insect societies and their parasites.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Few areas of the world have western honey bee (Apis mellifera) colonies that are free of invasive parasites Nosema ceranae (fungi) and Varroa destructor (mites). Particularly detrimental is V. destructor; in addition to feeding on host haemolymph, these mites are important vectors of several viruses that are further implicated as contributors to honey bee mortality around the world. Thus, the biogeography and attendant consequences of viral communities in the absence of V. destructor are of significant interest. The island of Newfoundland, Province of Newfoundland and Labrador, Canada, is free of V. destructor; the absence of N. ceranae has not been confirmed. Of 55 Newfoundland colonies inspected visually for their strength and six signs of disease, only K-wing had prevalence above 5% (40/55 colonies = 72.7%). Similar to an earlier study, screenings again confirmed the absence of V. destructor, small hive beetles Aethina tumida (Murray), tracheal mites Acarapis woodi (Rennie), and Tropilaelaps spp. ectoparasitic mites. Of a subset of 23 colonies screened molecularly for viruses, none had Israeli acute paralysis virus, Kashmir bee virus, or sacbrood virus. Sixteen of 23 colonies (70.0%) were positive for black queen cell virus, and 21 (91.3%) had some evidence for deformed wing virus. No N. ceranae was detected in molecular screens of 55 colonies, although it is possible extremely low intensity infections exist; the more familiar N. apis was found in 53 colonies (96.4%). Under these conditions, K-wing was associated (positively) with colony strength; however, viruses and N. apis were not. Furthermore, black queen cell virus was positively and negatively associated with K-wing and deformed wing virus, respectively. Newfoundland honey bee colonies are thus free of several invasive parasites that plague operations in other parts of the world, and they provide a unique research arena to study independent pathology of the parasites that are present.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Some parasites of social insects are able to exploit the exchange of food between nestmates via trophallaxis, because they are chemically disguised as nestmates. However, a few parasites succeed in trophallactic solicitation although they are attacked by workers. The underlying mechanisms are not well understood. The small hive beetle (=SHB), Aethina tumida, is such a parasite of honey bee, Apis mellifera, colonies and is able to induce trophallaxis. Here, we investigate whether SHB trophallactic solicitation is innate and affected by sex and experience. We quantified characteristics of the trophallactic solicitation in SHBs from laboratory-reared individuals that were either bee-n¯ve or had 5 days experience. The data clearly show that SHB trophallactic solicitation is innate and further suggest that it can be influenced by both experience and sex. Inexperienced SHB males begged more often than any of the other groups had longer breaks than their experienced counterparts and a longer soliciting duration than both experienced SHB males and females, suggesting that they start rather slowly and gain more from experience. Successful experienced females and males were not significantly different from each other in relation to successful trophallactic interactions, but had a significantly shorter soliciting duration compared to all other groups, except successful inexperienced females. Trophallactic solicitation success, feeding duration and begging duration were not significantly affected by either SHB sex or experience, supporting the notion that these behaviors are important for survival in host colonies. Overall, success seems to be governed by quality rather than quantity of interactions, thereby probably limiting both SHB energy investment and chance of injury (<1%). Trophallactic solicitation by SHBs is a singular example for an alternative strategy to exploit insect societies without requiring chemical disguise. Hit-and-run trophallaxis is an attractive test system to get an insight into trophallaxis in the social insects.