45 resultados para A Modification of de la Escalera’s Algorithm
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
To identify the causative mutation leading to autosomal dominant macular dystrophy, cone dystrophy, and cone-rod dystrophy in a five-generation family and to explain the high intrafamilial phenotypic variation by identifying possible modifier genes.
Resumo:
The objective of this study was to assess a pharmacokinetic algorithm to predict ketamine plasma concentration and drive a target-controlled infusion (TCI) in ponies. Firstly, the algorithm was used to simulate the course of ketamine enantiomers plasma concentrations after the administration of an intravenous bolus in six ponies based on individual pharmacokinetic parameters obtained from a previous experiment. Using the same pharmacokinetic parameters, a TCI of S-ketamine was then performed over 120 min to maintain a concentration of 1 microg/mL in plasma. The actual plasma concentrations of S-ketamine were measured from arterial samples using capillary electrophoresis. The performance of the simulation for the administration of a single bolus was very good. During the TCI, the S-ketamine plasma concentrations were maintained within the limit of acceptance (wobble and divergence <20%) at a median of 79% (IQR, 71-90) of the peak concentration reached after the initial bolus. However, in three ponies the steady concentrations were significantly higher than targeted. It is hypothesized that an inaccurate estimation of the volume of the central compartment is partly responsible for that difference. The algorithm allowed good predictions for the single bolus administration and an appropriate maintenance of constant plasma concentrations.
Resumo:
Systemic lupus erythematosus (SLE) is an autoimmune disease that affects multiple organs, with glomerulonephritis representing a frequent and serious manifestation. SLE is characterized by the presence of various autoantibodies, including anti-DNA antibodies that occur in approximately 70% of patients with SLE and which contribute to disease pathogenesis. Consequently, immunosuppressive therapies are applied in the treatment of SLE to reduce autoantibody levels. However, increasing evidence suggests that DNA--especially double--stranded DNA-constitutes an important pathogenic factor that is able to activate inflammatory responses by itself in autoimmune diseases. Therefore, modifying the structure of DNA to reduce its pathogenicity might be a more targeted approach for the treatment of SLE than immunosuppression. This article presents information in support of this strategy, and discusses the potential methods of DNA structure manipulation--in light of data obtained from mouse models of SLE--including topoisomerase I inhibition, administration of DNase I, or modification of histones using heparin or histone deacetylase inhibitors.
Resumo:
An investigation into the physical consequences of including a Jahn-Teller distorted Cu(II) ion within an antiferromagnetically coupled ring, [R(2)NH(2)][Cr(7)CuF(8)((O(2)C(t)Bu)(16))] is reported. Inelastic neutron scattering (INS) and electron paramagnetic resonance (EPR) spectroscopic data are simulated using a microscopic spin Hamiltonian, and show that the two Cr-Cu exchange interactions must be inequivalent. One Cr-Cu exchange is found to be antiferromagnetic and the other ferromagnetic. The geometry of the Jahn-Teller elongation is deduced from these results, and shows that a Jahn-Teller elongation axis must lie in the plane of the Cr(7)Cu wheel; the elongation is not observed by X-ray crystallography, due to positional disorder of the Cu site within the wheel. An electronic structure calculation confirms the structural distortion of the Cu site.
Resumo:
Prospective validation of two algorithms for the initiation of phenprocoumon treatment.