5 resultados para 85-572
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
P450 oxidoreductase (POR) is the electron donor for all microsomal P450s including steroidogenic enzymes CYP17A1, CYP19A1 and CYP21A2. We found a novel POR mutation P399_E401del in two unrelated Turkish patients with 46,XX disorder of sexual development. Recombinant POR proteins were produced in yeast and tested for their ability to support steroid metabolizing P450 activities. In comparison to wild-type POR, the P399_E401del protein was found to decrease catalytic efficiency of 21-hydroxylation of progesterone by 68%, 17α-hydroxylation of progesterone by 76%, 17,20-lyase action on 17OH-pregnenolone by 69%, aromatization of androstenedione by 85% and cytochrome c reduction activity by 80%. Protein structure analysis of the three amino acid deletion P399_E401 revealed reduced stability and flexibility of the mutant. In conclusion, P399_E401del is a novel mutation in POR that provides valuable genotype-phenotype and structure-function correlation for mutations in a different region of POR compared to previous studies. Characterization of P399_E401del provides further insight into specificity of different P450s for interaction with POR as well as nature of metabolic disruptions caused by more pronounced effect on specific P450s like CYP17A1 and aromatase.
Resumo:
The migration of radioactive and chemical contaminants in clay materials and argillaceous host rocks is characterised by diffusion and retention processes. Valuable information on such processes can be gained by combining diffusion studies at laboratory scale with field migration tests. In this work, the outcome of a multi-tracer in situ migration test performed in the Opalinus Clay formation in the Mont Terri underground rock laboratory (Switzerland) is presented. Thus, 1.16 x 10(5) Bq/L of HTO, 3.96 x 10(3) Bq/L of Sr-85, 6.29 x 10(2) Bq/L of Co-60, 2.01 x 10(-3) mol/L Cs, 9.10 x 10(-4) mol/L I and 1.04 x 10(-3) mol/L Br were injected into the borehole. The decrease of the radioisotope concentrations in the borehole was monitored using in situ gamma-spectrometry. The other tracers were analyzed with state-of-the-art laboratory procedures after sampling of small water aliquots from the reservoir. The diffusion experiment was carried out over a period of one year after which the interval section was overcored and analyzed. Based on the experimental data from the tracer evolution in the borehole and the tracer profiles in the rock, the diffusion of tracers was modelled with the numerical code CRUNCH. The results obtained for HTO (H-3), I- and Br- confirm previous lab and in situ diffusion data. Anionic fluxes into the formation were smaller compared to HTO because of anion exclusion effects. The migration of the cations Sr-85(2+), Cs+ and Co-60(2+) was found to be governed by both diffusion and sorption processes. For Sr-85(2+), the slightly higher diffusivity relative to HTO and the low sorption value are consistent with laboratory diffusion measurements on small-scale samples. In the case of Cs+, the numerically deduced high diffusivity and the Freundlich-type sorption behaviour is also supported by ongoing laboratory data. For Co, no laboratory diffusion data were yet available for comparison; however, the modelled data suggests that Co-60(2+) sorption was weaker than would be expected from available batch sorption data. Overall, the results demonstrate the feasibility of the experimental setup for obtaining high-quality diffusion data for conservative and sorbing tracers. (C) 2007 Elsevier Ltd. All rights reserved.