3 resultados para 575.1
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND Most guidelines recommend at least 2-cm excision margin for melanomas thicker than 2 mm. OBJECTIVE We evaluated whether 1- or 2-cm excision margins for melanoma (>2 mm) result in different outcomes. METHODS This is a retrospective cohort study on patients with melanomas (>2 mm) who underwent tumor excision with 1-cm (228 patients) or 2-cm (97 patients) margins to investigate presence of local recurrences, locoregional and distant metastases, and disease-free and overall survival. RESULTS In all, 325 patients with mean age of 61.84 years and Breslow thickness of 4.36 mm were considered for the study with a median follow-up of 1852 days (1995-2012). There was no significant difference in the frequency of locoregional and distant metastasis between the 2 groups (P = .311 and .571). The survival analysis showed no differences for disease-free (P = .800; hazard ratio 0.948; 95% confidence interval 0.627-1.433) and overall (P = .951; hazard ratio 1.018; 95% confidence interval 0.575-1.803) survival. LIMITATIONS The study was not prospectively randomized. CONCLUSIONS Our study did not show any significant differences in important outcome parameters such as local or distant metastases and overall survival. A prospective study testing 1- versus 2-cm excision margin is warranted.
Resumo:
Smartphone-App zur Kohlenhydratberechnung Neue Technologien wie Blutzuckersensoren und moderne Insulinpumpen prägten die Therapie des Typ-1-Diabetes (T1D) in den letzten Jahren in wesentlichem Ausmaß. Smartphones sind aufgrund ihrer rasanten technischen Entwicklung eine weitere Plattform für Applikationen zur Therapieunterstützung bei T1D. GoCARB Hierbei handelt es sich um ein zur Kohlenhydratberechnung entwickeltes System für Personen mit T1D. Die Basis für Endanwender stellt ein Smartphone mit Kamera dar. Zur Berechnung werden 2 mit dem Smartphone aus verschiedenen Winkeln aufgenommene Fotografien einer auf einem Teller angerichteten Mahlzeit benötigt. Zusätzlich ist eine neben dem Teller platzierte Referenzkarte erforderlich. Die Grundlage für die Kohlenhydratberechnung ist ein Computer-Vision-gestütztes Programm, das die Mahlzeiten aufgrund ihrer Farbe und Textur erkennt. Das Volumen der Mahlzeit wird mit Hilfe eines dreidimensional errechneten Modells bestimmt. Durch das Erkennen der Art der Mahlzeiten sowie deren Volumen kann GoCARB den Kohlenhydratanteil unter Einbeziehung von Nährwerttabellen berechnen. Für die Entwicklung des Systems wurde eine Bilddatenbank von mehr als 5000 Mahlzeiten erstellt und genutzt. Resümee Das GoCARB-System befindet sich aktuell in klinischer Evaluierung und ist noch nicht für Patienten verfügbar.
Resumo:
MRSI grids frequently show spectra with poor quality, mainly because of the high sensitivity of MRS to field inhomogeneities. These poor quality spectra are prone to quantification and/or interpretation errors that can have a significant impact on the clinical use of spectroscopic data. Therefore, quality control of the spectra should always precede their clinical use. When performed manually, quality assessment of MRSI spectra is not only a tedious and time-consuming task, but is also affected by human subjectivity. Consequently, automatic, fast and reliable methods for spectral quality assessment are of utmost interest. In this article, we present a new random forest-based method for automatic quality assessment of (1) H MRSI brain spectra, which uses a new set of MRS signal features. The random forest classifier was trained on spectra from 40 MRSI grids that were classified as acceptable or non-acceptable by two expert spectroscopists. To account for the effects of intra-rater reliability, each spectrum was rated for quality three times by each rater. The automatic method classified these spectra with an area under the curve (AUC) of 0.976. Furthermore, in the subset of spectra containing only the cases that were classified every time in the same way by the spectroscopists, an AUC of 0.998 was obtained. Feature importance for the classification was also evaluated. Frequency domain skewness and kurtosis, as well as time domain signal-to-noise ratios (SNRs) in the ranges 50-75 ms and 75-100 ms, were the most important features. Given that the method is able to assess a whole MRSI grid faster than a spectroscopist (approximately 3 s versus approximately 3 min), and without loss of accuracy (agreement between classifier trained with just one session and any of the other labelling sessions, 89.88%; agreement between any two labelling sessions, 89.03%), the authors suggest its implementation in the clinical routine. The method presented in this article was implemented in jMRUI's SpectrIm plugin. Copyright © 2016 John Wiley & Sons, Ltd.