3 resultados para 5-fluorocytosine (5-FC)

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Using a convenient and fast HPLC procedure we determined serum concentrations of the fungistatic agent 5-fluorocytosine (5-FC) in 375 samples from 60 patients treated with this drug. The mean trough concentration (n = 127) was 64.3 mg/l (range: 11.8-208.0 mg/l), the mean peak concentration (n = 122) was 99.9 mg/l (range: 25.6-263.8 mg/l), the mean nonpeak/nontrough concentration (n = 126) was 80.1 mg/l (range: 10.5-268.0 mg/l). Totally 134 (35.7%) samples were outside the therapeutic range (25-100 mg/l), 108 (28.8%) being too high, 26 (6.9%) being too low. Forty-four (73%) patients showed 5-FC serum concentrations outside the therapeutic range at least once during the treatment course. In a prospective study we performed 65 dosage predictions on 30 patients by use of a 3-point method previously developed for aminoglycoside dosage adaptation. The mean absolute prediction error of the dosage adaptation was +0.7 mg/l (range: -26.0 to +28.0 mg/l). The root mean square prediction error was 10.7 mg/l. The mean predicted concentration (65.3 mg/l) agreed very well with the mean measured concentration (64.6 mg/l). The frequency distribution of 5-FC serum concentrations indicates that 5-FC monitoring is important. The applied pharmacokinetic method allows individual adaptations of 5-FC dosage with a clinically acceptable prediction error.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm–1 resolution. The 000 rotational band contour is polarized in-plane, implying that the electronic transition is 1ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the 1ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm–1 is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the 1ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm–1; this is attributed to the 1ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm–1, rapid nonradiative relaxation (knr ≥ 1012 s–1) sets in, which we interpret as the height of the 1ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm–1. These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of dependence on temperature and on the surrounding medium implies that the 5FCyt nonradiative relaxation from its S1 (1ππ*) state is essentially controlled by the same ∼1200 cm–1 barrier and conical intersection both in the gas phase and in solution.

Relevância:

50.00% 50.00%

Publicador:

Resumo:

The pharmacological characterization of ligands depends upon the ability to accurately measure their binding properties. Fluorescence provides an alternative to more traditional approaches such as radioligand binding. Here we describe the binding and spectroscopic properties of eight fluorescent 5-HT3 receptor ligands. These were tested on purified receptors, expressed receptors on live cells, or in vivo. All compounds had nanomolar affinities with fluorescent properties extending from blue to near infra-red emission. A fluorescein-derivative had the highest affinity as measured by fluorescence polarization (FP; 1.14 nM), flow cytometry (FC; 3.23 nM) and radioligand binding (RB; 1.90 nM). Competition binding with unlabeled 5-HT3 receptor agonists (5-HT, mCPBG, quipazine) and antagonists (granisetron, palonosetron, tropisetron) yielded similar affinities in all three assays. When cysteine substitutions were introduced into the 5-HT3 receptor binding site the same changes in binding affinity were seen for both granisetron and the fluorescein-derivative, suggesting that they both adopt orientations that are consistent with co-crystal structures of granisetron with a homologous protein (5HTBP). As expected, in vivo live imaging in anaesthetized mice revealed staining in the abdominal cavity in intestines, but also in salivary glands. The unexpected presence of 5-HT3 receptors in mouse salivary glands was confirmed by Western blots. Overall, these results demonstrate the wide utility of our new high-affinity fluorescently-labeled 5-HT3 receptor probes, ranging from in vitro receptor pharmacology, including FC and FP ligand competition, to live imaging of 5-HT3 expressing tissues.