2 resultados para 5-fluorocytosine
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Using a convenient and fast HPLC procedure we determined serum concentrations of the fungistatic agent 5-fluorocytosine (5-FC) in 375 samples from 60 patients treated with this drug. The mean trough concentration (n = 127) was 64.3 mg/l (range: 11.8-208.0 mg/l), the mean peak concentration (n = 122) was 99.9 mg/l (range: 25.6-263.8 mg/l), the mean nonpeak/nontrough concentration (n = 126) was 80.1 mg/l (range: 10.5-268.0 mg/l). Totally 134 (35.7%) samples were outside the therapeutic range (25-100 mg/l), 108 (28.8%) being too high, 26 (6.9%) being too low. Forty-four (73%) patients showed 5-FC serum concentrations outside the therapeutic range at least once during the treatment course. In a prospective study we performed 65 dosage predictions on 30 patients by use of a 3-point method previously developed for aminoglycoside dosage adaptation. The mean absolute prediction error of the dosage adaptation was +0.7 mg/l (range: -26.0 to +28.0 mg/l). The root mean square prediction error was 10.7 mg/l. The mean predicted concentration (65.3 mg/l) agreed very well with the mean measured concentration (64.6 mg/l). The frequency distribution of 5-FC serum concentrations indicates that 5-FC monitoring is important. The applied pharmacokinetic method allows individual adaptations of 5-FC dosage with a clinically acceptable prediction error.
Resumo:
The S0 → S1 vibronic spectrum and S1 state nonradiative relaxation of jet-cooled keto-amino 5-fluorocytosine (5FCyt) are investigated by two-color resonant two-photon ionization spectroscopy at 0.3 and 0.05 cm–1 resolution. The 000 rotational band contour is polarized in-plane, implying that the electronic transition is 1ππ*. The electronic transition dipole moment orientation and the changes of rotational constants agree closely with the SCS-CC2 calculated values for the 1ππ* (S1) transition of 5FCyt. The spectral region from 0 to 300 cm–1 is dominated by overtone and combination bands of the out-of-plane ν1′ (boat), ν2′ (butterfly), and ν3′ (HN–C6H twist) vibrations, implying that the pyrimidinone frame is distorted out-of-plane by the 1ππ* excitation, in agreement with SCS-CC2 calculations. The number of vibronic bands rises strongly around +350 cm–1; this is attributed to the 1ππ* state barrier to planarity that corresponds to the central maximum of the double-minimum out-of-plane vibrational potentials along the ν1′, ν2′, and ν3′ coordinates, which gives rise to a high density of vibronic excitations. At +1200 cm–1, rapid nonradiative relaxation (knr ≥ 1012 s–1) sets in, which we interpret as the height of the 1ππ* state barrier in front of the lowest S1/S0 conical intersection. This barrier in 5FCyt is 3 times higher than that in cytosine. The lifetimes of the ν′ = 0, 2ν1′, 2ν2′, 2ν1′ + 2ν2′, 4ν2′, and 2ν1′ + 4ν2′ levels are determined from Lorentzian widths fitted to the rotational band contours and are τ ≥ 75 ps for ν′ = 0, decreasing to τ ≥ 55 ps at the 2ν1′ + 4ν2′ level at +234 cm–1. These gas-phase lifetimes are twice those of S1 state cytosine and 10–100 times those of the other canonical nucleobases in the gas phase. On the other hand, the 5FCyt gas-phase lifetime is close to the 73 ps lifetime in room-temperature solvents. This lack of dependence on temperature and on the surrounding medium implies that the 5FCyt nonradiative relaxation from its S1 (1ππ*) state is essentially controlled by the same ∼1200 cm–1 barrier and conical intersection both in the gas phase and in solution.