20 resultados para 40Ar

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

K-feldspar (Kfs) from the Chain of Ponds Pluton (CPP) is the archetypal reference material, on which thermochronological modeling of Ar diffusion in discrete “domains” was founded. We re-examine the CPP Kfs using cathodoluminescence and back-scattered electron imaging, transmission electron microscopy, and electron probe microanalysis. 40Ar/39Ar stepwise heating experiments on different sieve fractions, and on handpicked and unpicked aliquots, are compared. Our results reproduce the staircase-shaped age spectrum and the Arrhenius trajectory of the literature sample, confirming that samples collected from the same locality have an identical Ar isotope record. Even the most pristine-looking Kfs from the CPP contains successive generations of secondary, metasomatic/retrograde mineral replacements that post-date magmatic crystallization. These chemically and chronologically distinct phases are responsible for its staircase-shaped age spectra, which are modified by handpicking. While genuine within-grain diffusion gradients are not ruled out by these data, this study demonstrates that the most important control on staircase-shaped age spectra is the simultaneous presence of heterochemical, diachronous post-magmatic mineral growth. At least five distinct mineral species were identified in the Kfs separate, three of which can be traced to external fluids interacting with the CPP in a chemically open system. Sieve fractions have size-shifted Arrhenius trajectories, negating the existence of the smallest “diffusion domains”. Heterochemical phases also play an important role in producing non-linear trajectories. In vacuo degassing rates recovered from Arrhenius plots are neither related to true Fick’s Law diffusion nor to the staircase shape of the age spectra. The CPP Kfs used to define the "diffusion domain" model demonstrates the predominance of metasomatic alteration by hydrothermal fluids and recrystallization in establishing the natural Ar distribution amongst different coexisting phases that gives rise to the staircase-shaped age spectrum. Microbeam imaging of textures is as essential for 40Ar-39Ar hygrochronology as it is for U-Pb geochronology.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Pressure–Temperature–time (P–T–t) estimates of the syn-kinematic strain at the peak-pressure conditions reached during shallow underthrusting of the Briançonnais Zone in the Alpine subduction zone was made by thermodynamic modelling and 40Ar/39Ar dating in the Plan-de-Phasy unit (SE of the Pelvoux Massif, Western Alps). The dated phengite minerals crystallized syn-kinematically in a shear zone indicating top-to-the-N motion. By combining X-ray mapping with multi-equilibrium calculations, we estimate the phengite crystallization conditions at 270 ± 50 °C and 8.1 ± 2 kbar at an age of 45.9 ± 1.1 Ma. Combining this P–T–t estimate with data from the literature allows us to constrain the timing and geometry of Alpine continental subduction. We propose that the Briançonnais units were scalped on top of the slab during ongoing continental subduction and exhumed continuously until collision.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The 39Ar-40Ar technique is often used to date the metamorphic evolution of basement rocks. The present review article examines systematic aspects of the K-Ar decay system in different mineral chronometers frequently found in mono- and polymetamorphic basements (amphibole, biotite, muscovite/phengite, K-feldspar). A key observation is that the measured dissolution rate of silicates in aqueous fluids is many orders of magnitude faster, and has a much lower activation energy, than the rate of Fickian diffusion of Ar. The effects of this inequality are patchy age zonations, very much like those observed in many U-Pb chronometers, unaccompanied by intra-crystalline bell¬shaped Ar loss profiles. Recognizing the importance of the respective rate constants in field situations leads to re-evaluating the ages and the interpretive paradigms in classic examples such as the Central Alpine "Lepontine" amphibolite event and the Western Alpine eclogitic event.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Muscovite B4M, distributed in 1961 as an age standard, was ground under ethanol. Five grain size fractions were obtained and characterized by X-ray diffraction. They display a mixing trend between a phengitic (enriched in the fraction <0.2 µm) and a muscovitic component (predominant in the fraction >20 µm). High-pressure phengite is preserved as a relict in retrograde muscovite. Electron microprobe analyses of the distributed mineral separate reveal at least four white mica populations based on Si, Al, Mg, Na, Fe and F. Rb/K ratios vary by one order of magnitude. Rb–Sr analyses link the mineralogical heterogeneity to variable Rb/Sr and 87Sr/86Sr ratios. The grain size fractions define no internal isochron. Relict fine-grained phengite gives older ages than coarse-grained retrograde greenschist facies muscovite. The inverse grain size–age relationship also characterizes 39Ar/40Ar analyses. Cl/K anticorrelates with step ages: Cl-rich coarse muscovite is younger than Cl-poor fine relict phengite. Sr and Ar preserve a similar isotopic inheritance despite peak metamorphism reaching 635±20 °C. A suitable mineral standard requires that its petrological equilibrium first be demonstrated. Relicts and retrograde reaction textures are a guarantee of isotopic disequilibrium and heterogeneous ages within single crystal at the micrometre scale.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Recent improvements in the precision of mass spectrometric measurements have reduced the uncertainty of K-Ar and 39Ar-40Ar ages measured on geological materials. Now the major sources of uncertainty are the uncertainties on the 40K decay constant and the absolute abundance of 40K. In order to improve on this situation we determined the abundance of the 40K isotope in terrestrial standards. A ThermoFischer Triton+ thermal ionization mass spectrometer was used for K isotope ratio measurements of the NIST K standard reference materials SRM 918b and SRM 985. Ion beams were measured in Faraday cups with amplifiers equipped with 1E10, 1E11 and 1E12 Ω resistors. Three measurement protocols were used: (A) dynamic measurement with in-run fractionation correction by normalization to the IUPAC recommended isotope ratio 41K/39K = 0.0721677; (B) total evaporation; (C) a modified total evaporation with interblock baseline measurements. Different measurement protocols were combined with different loading procedures. The best results were obtained by loading samples on single tantalum filaments with 0.1M H3PO4. The total ion yields (ionization + transmission) were tested for the evaporation procedures (B) and (C) and ranged up to 48 %. The resulting best estimate for the 40K/39K ratio is 0.000 125 116 ± 57 (2σ), corresponding to 40K/K = (1.1668 ± 8; 2σ) x 10-4.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The mechanisms of Ar release from K-feldspar samples in laboratory experiments and during their geological history are assessed here. Modern petrology clearly established that the chemical and isotopic record of minerals is normally dominated by aqueous recrystallization. The laboratory critique is trickier, which explains why so many conflicting approaches have been able to survive long past their expiration date. Current models are evaluated for self-consistency; especially Arrhenian non-linearity leads to paradoxes. The models’ testable geological predictions suggest that temperature-based downslope extrapolations often overestimate observed geological Ar mobility substantially. An updated interpretation is based on the unrelatedness of geological behaviour to laboratory experiments. The isotopic record of K-feldspar in geological samples is not a unique function of temperature, as recrystallisation promoted by aqueous fluids is the predominant mechanism controlling isotope transport. K-feldspar should therefore be viewed as a hygrochronometer. Laboratory degassing proceeds from structural rearrangements and phase transitions such as are observed in situ at high temperature in Na and Pb feldspars. These effects violate the mathematics of an inert Fick’s Law matrix and preclude downslope extrapolation. The similar upward-concave, non-linear shapes of Arrhenius trajectories of many silicates, hydrous and anhydrous, are likely common manifestations of structural rearrangements in silicate structures.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The significance of the multi-isotopic record preserved in K-feldspars is assessed on samples from the Aar metagranite, Central Alps, Switzerland having very tight independent geological constraints. Stepwise leaching reveals that two diachronically grown K-feldspar generations coexist: Kfs-1 (≥ 35 Ma old, Ca-poor, Rb-Cl-rich, with low 87Sr/86Sr and high 206Pb/204Pb) and Kfs-2 (≤ 10 Ma old, antithetic isotopic signatures deriving from external fluids). Microtextures imaged by cathodoluminescence, backscattered electrons, and electron probe microanalysis are patchy and chemically heterogeneous, with pronounced enrichments in Ba in the retrogressed regions. This confirms the simultaneous presence of fluid-dominated retrogression and recrystallization and isotopic inheritance. The staircase-shaped 40Ar/39Ar age spectrum correlates with the Ca/K and Cl/K signatures. This reflects a mixture of heterochemical K-feldspar generations, and not an intracrystalline Ar gradient caused by diffusion. The shape of the age spectrum and the in vacuo release kinetics proceed from entirely different physical and geological phenomena. What K-feldspars can be effectively used for is to constrain the timing of the fluids that interacted with them by multi-isotopic analyses, rather than to model a “cooling history” from 39Ar release alone. The identification of multiple mineral generations by imaging combined with multi-isotopic analysis enables the accurate dating of the events of a multistage evolution after the initial crystallization of the rock in which the minerals occur.