10 resultados para 3D feature extraction
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Quantitative characterisation of carotid atherosclerosis and classification into symptomatic or asymptomatic is crucial in planning optimal treatment of atheromatous plaque. The computer-aided diagnosis (CAD) system described in this paper can analyse ultrasound (US) images of carotid artery and classify them into symptomatic or asymptomatic based on their echogenicity characteristics. The CAD system consists of three modules: a) the feature extraction module, where first-order statistical (FOS) features and Laws' texture energy can be estimated, b) the dimensionality reduction module, where the number of features can be reduced using analysis of variance (ANOVA), and c) the classifier module consisting of a neural network (NN) trained by a novel hybrid method based on genetic algorithms (GAs) along with the back propagation algorithm. The hybrid method is able to select the most robust features, to adjust automatically the NN architecture and to optimise the classification performance. The performance is measured by the accuracy, sensitivity, specificity and the area under the receiver-operating characteristic (ROC) curve. The CAD design and development is based on images from 54 symptomatic and 54 asymptomatic plaques. This study demonstrates the ability of a CAD system based on US image analysis and a hybrid trained NN to identify atheromatous plaques at high risk of stroke.
Resumo:
In this paper, a computer-aided diagnostic (CAD) system for the classification of hepatic lesions from computed tomography (CT) images is presented. Regions of interest (ROIs) taken from nonenhanced CT images of normal liver, hepatic cysts, hemangiomas, and hepatocellular carcinomas have been used as input to the system. The proposed system consists of two modules: the feature extraction and the classification modules. The feature extraction module calculates the average gray level and 48 texture characteristics, which are derived from the spatial gray-level co-occurrence matrices, obtained from the ROIs. The classifier module consists of three sequentially placed feed-forward neural networks (NNs). The first NN classifies into normal or pathological liver regions. The pathological liver regions are characterized by the second NN as cyst or "other disease." The third NN classifies "other disease" into hemangioma or hepatocellular carcinoma. Three feature selection techniques have been applied to each individual NN: the sequential forward selection, the sequential floating forward selection, and a genetic algorithm for feature selection. The comparative study of the above dimensionality reduction methods shows that genetic algorithms result in lower dimension feature vectors and improved classification performance.
Resumo:
Over the last decade, a plethora of computer-aided diagnosis (CAD) systems have been proposed aiming to improve the accuracy of the physicians in the diagnosis of interstitial lung diseases (ILD). In this study, we propose a scheme for the classification of HRCT image patches with ILD abnormalities as a basic component towards the quantification of the various ILD patterns in the lung. The feature extraction method relies on local spectral analysis using a DCT-based filter bank. After convolving the image with the filter bank, q-quantiles are computed for describing the distribution of local frequencies that characterize image texture. Then, the gray-level histogram values of the original image are added forming the final feature vector. The classification of the already described patches is done by a random forest (RF) classifier. The experimental results prove the superior performance and efficiency of the proposed approach compared against the state-of-the-art.
Resumo:
Rho guanosine triphosphatases (GTPases) control the cytoskeletal dynamics that power neurite outgrowth. This process consists of dynamic neurite initiation, elongation, retraction, and branching cycles that are likely to be regulated by specific spatiotemporal signaling networks, which cannot be resolved with static, steady-state assays. We present NeuriteTracker, a computer-vision approach to automatically segment and track neuronal morphodynamics in time-lapse datasets. Feature extraction then quantifies dynamic neurite outgrowth phenotypes. We identify a set of stereotypic neurite outgrowth morphodynamic behaviors in a cultured neuronal cell system. Systematic RNA interference perturbation of a Rho GTPase interactome consisting of 219 proteins reveals a limited set of morphodynamic phenotypes. As proof of concept, we show that loss of function of two distinct RhoA-specific GTPase-activating proteins (GAPs) leads to opposite neurite outgrowth phenotypes. Imaging of RhoA activation dynamics indicates that both GAPs regulate different spatiotemporal Rho GTPase pools, with distinct functions. Our results provide a starting point to dissect spatiotemporal Rho GTPase signaling networks that regulate neurite outgrowth.
Resumo:
Dimensional alterations of the facial bone wall following tooth extractions in the esthetic zone have a profound effect on treatment outcomes. This prospective study in 39 patients is the first to investigate three-dimensional (3D) alterations of facial bone in the esthetic zone during the initial 8 wks following flapless tooth extraction. A novel 3D analysis was carried out, based on 2 consecutive cone beam computed tomographies (CBCTs). A risk zone for significant bone resorption was identified in central areas, whereas proximal areas yielded only minor changes. Correlation analysis identified a facial bone wall thickness of ≤ 1 mm as a critical factor associated with the extent of bone resorption. Thin-wall phenotypes displayed pronounced vertical bone resorption, with a median bone loss of 7.5 mm, as compared with thick-wall phenotypes, which decreased by only 1.1 mm. For the first time, 3D analysis has allowed for documentation of dimensional alterations of the facial bone wall in the esthetic zone of humans following extraction. It also characterized a risk zone prone to pronounced bone resorption in thin-wall phenotypes. Vertical bone loss was 3.5 times more severe than findings reported in the existing literature.
Resumo:
Recently developed computer applications provide tools for planning cranio-maxillofacial interventions based on 3-dimensional (3D) virtual models of the patient's skull obtained from computed-tomography (CT) scans. Precise knowledge of the location of the mid-facial plane is important for the assessment of deformities and for planning reconstructive procedures. In this work, a new method is presented to automatically compute the mid-facial plane on the basis of a surface model of the facial skeleton obtained from CT. The method matches homologous surface areas selected by the user on the left and right facial side using an iterative closest point optimization. The symmetry plane which best approximates this matching transformation is then computed. This new automatic method was evaluated in an experimental study. The study included experienced and inexperienced clinicians defining the symmetry plane by a selection of landmarks. This manual definition was systematically compared with the definition resulting from the new automatic method: Quality of the symmetry planes was evaluated by their ability to match homologous areas of the face. Results show that the new automatic method is reliable and leads to significantly higher accuracy than the manual method when performed by inexperienced clinicians. In addition, the method performs equally well in difficult trauma situations, where key landmarks are unreliable or absent.
Resumo:
Hereditary spastic paraparesis (HSP) is a heterogeneous group of neurodegenerative disorders with progressive lower limb spasticity, categorized into pure (p-HSP) and complicated forms (c-HSP). The purpose of this study was to evaluate if brain volumes in HSP were altered compared with a control population. Brain volumes were determined in patients suffering from HSP, including both p-HSP (n = 21) and c-HSP type (n = 12), and 30 age-matched healthy controls, using brain parenchymal fractions (BPF) calculated from 3D MRI data in an observer-independent procedure. In addition, the tissue segments of grey and white matter were analysed separately. In HSP patients, BPF were significantly reduced compared with controls both for the whole patient group (P < 0.001) and for both subgroups, indicating considerable brain atrophy. In contrast to controls who showed a decline of brain volumes with age, this physiological phenomenon was less pronounced in HSP. Therefore, global brain parenchyma reduction, involving both grey and white matter, seems to be a feature in both subtypes of HSP. Atrophy was more pronounced in c-HSP, consistent with the more severe phenotype including extramotor involvement. Thus, global brain atrophy, detected by MRI-based brain volume quantification, is a biological marker in HSP subtypes.
Resumo:
Automatic identification and extraction of bone contours from X-ray images is an essential first step task for further medical image analysis. In this paper we propose a 3D statistical model based framework for the proximal femur contour extraction from calibrated X-ray images. The automatic initialization is solved by an estimation of Bayesian network algorithm to fit a multiple component geometrical model to the X-ray data. The contour extraction is accomplished by a non-rigid 2D/3D registration between a 3D statistical model and the X-ray images, in which bone contours are extracted by a graphical model based Bayesian inference. Preliminary experiments on clinical data sets verified its validity