12 resultados para 3D Visualization

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is one of the most important tasks of the forensic pathologist to explain the forensically relevant medical findings to medical non-professionals. However, it is often difficult to comment on the nature and potential consequences of organ injuries in a comprehensive way to individuals with limited knowledge of anatomy and physiology. This rare case of survived pancreatic transaction after kicks to the abdomen illustrates how the application of dedicated software programs for three-dimensional reconstruction can overcome these difficulties, allowing for clear and concise visualization of complex findings.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Venous air embolism (VAE) is an often occurring forensic finding in cases of injury to the head and neck. Whenever found, it has to be appraised in its relation to the cause of death. While visualization and quantification is difficult at traditional autopsy, Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) offer a new potential in the diagnosis of VAE. This paper reports the findings of VAE in four cases of massive head injury examined postmortem by Multislice Computed Tomography (MSCT) prior to autopsy. MSCT data of the thorax were processed using 3D air structure reconstruction software to visualize air embolism within the vascular system. Quantification of VAE was done by multiplying air containing areas on axial 2D images by their reconstruction intervals and then by summarizing the air volumes. Excellent 3D visualization of the air within the vascular system was obtained in all cases, and the intravascular gas volume was quantified.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Oncological liver surgery and interventions aim for removal of tumor tissue while preserving a sufficient amount of functional tissue to ensure organ regeneration. This requires detailed understanding of the patient-specific internal organ anatomy (blood vessel system, bile ducts, tumor location). The introduction of computer support in the surgical process enhances anatomical orientation through patient-specific 3D visualization and enables precise reproduction of planned surgical strategies though stereotactic navigation technology. This article provides clinical background information on indications and techniques for the treatment of liver tumors, reviews the technological contributions addressing the problem of organ motion during navigated surgery on a deforming organ, and finally presents an overview of the clinical experience in computer-assisted liver surgery and interventions. The review concludes that several clinically applicable solutions for computer aided liver surgery are available and small-scale clinical trials have been performed. Further developments will be required more accurate and faster handling of organ deformation and large clinical studies will be required for demonstrating the benefits of computer aided liver surgery.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Within the next few years, the medical industry will launch increasingly affordable three-dimensional (3D) vision systems for the operating room (OR). This study aimed to evaluate the effect of two-dimensional (2D) and 3D visualization on surgical skills and task performance.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

This study evaluated the feasibility of documenting patterned injury using three dimensions and true colour photography without complex 3D surface documentation methods. This method is based on a generated 3D surface model using radiologic slice images (CT) while the colour information is derived from photographs taken with commercially available cameras. The external patterned injuries were documented in 16 cases using digital photography as well as highly precise photogrammetry-supported 3D structured light scanning. The internal findings of these deceased were recorded using CT and MRI. For registration of the internal with the external data, two different types of radiographic markers were used and compared. The 3D surface model generated from CT slice images was linked with the photographs, and thereby digital true-colour 3D models of the patterned injuries could be created (Image projection onto CT/IprojeCT). In addition, these external models were merged with the models of the somatic interior. We demonstrated that 3D documentation and visualization of external injury findings by integration of digital photography in CT/MRI data sets is suitable for the 3D documentation of individual patterned injuries to a body. Nevertheless, this documentation method is not a substitution for photogrammetry and surface scanning, especially when the entire bodily surface is to be recorded in three dimensions including all external findings, and when precise data is required for comparing highly detailed injury features with the injury-inflicting tool.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE: Besides DNA, dental radiographs play a major role in the identification of victims in mass casualties or in corpses with major postmortem alterations. Computed tomography (CT) is increasingly applied in forensic investigations and is used to scan the dentition of deceased persons within minutes. We investigated different restoration materials concerning their radiopacity in CT for dental identification purposes. METHODS: Extracted teeth with different filling materials (composite, amalgam, ceramic, temporary fillings) were CT scanned. Radiopacities of the filling materials were analyzed in extended CT scale images. RESULTS: Radiopacity values ranged from 6000-8500HU (temporary fillings), 4500-17000HU (composite fillings) and >30710HU (Amalgam and Gold). The values were used to define presets for a 3D colored volume rendering software. CONCLUSIONS: The effects of filling material caused streak artifacts could be distinctively reduced for the assessment of the dental status and a postprocessing algorithm was introduced that allows for 3D color encoded visualization and discrimination of different dental restorations based on postmortem CT data.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ABSTRACT: Nanotechnology in its widest sense seeks to exploit the special biophysical and chemical properties of materials at the nanoscale. While the potential technological, diagnostic or therapeutic applications are promising there is a growing body of evidence that the special technological features of nanoparticulate material are associated with biological effects formerly not attributed to the same materials at a larger particle scale. Therefore, studies that address the potential hazards of nanoparticles on biological systems including human health are required. Due to its large surface area the lung is one of the major sites of interaction with inhaled nanoparticles. One of the great challenges of studying particle-lung interactions is the microscopic visualization of nanoparticles within tissues or single cells both in vivo and in vitro. Once a certain type of nanoparticle can be identified unambiguously using microscopic methods it is desirable to quantify the particle distribution within a cell, an organ or the whole organism. Transmission electron microscopy provides an ideal tool to perform qualitative and quantitative analyses of particle-related structural changes of the respiratory tract, to reveal the localization of nanoparticles within tissues and cells and to investigate the 3D nature of nanoparticle-lung interactions.This article provides information on the applicability, advantages and disadvantages of electron microscopic preparation techniques and several advanced transmission electron microscopic methods including conventional, immuno and energy-filtered electron microscopy as well as electron tomography for the visualization of both model nanoparticles (e.g. polystyrene) and technologically relevant nanoparticles (e.g. titanium dioxide). Furthermore, we highlight possibilities to combine light and electron microscopic techniques in a correlative approach. Finally, we demonstrate a formal quantitative, i.e. stereological approach to analyze the distributions of nanoparticles in tissues and cells.This comprehensive article aims to provide a basis for scientists in nanoparticle research to integrate electron microscopic analyses into their study design and to select the appropriate microscopic strategy.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECT: The aim of our study was to demonstrate the image quality of the new device using human cadavers, extending the horizon of available imaging modalities in forensic medicine. MATERIALS AND METHODS: Six human cadavers were examined, revealing C-arm data sets of the head, neck thorax, abdomen and pelvis. High-resolution mode was performed with 500 fluoroscopy shots during a 190 degrees orbital movement with a constant tube voltage of 100 kV and a current of 4.6 mA. Based on these data sets subsequent three-dimensional reconstructions were generated. RESULTS: Reconstructed data sets revealed high-resolution images of all skeletal structures in a near-CT quality. The same image quality was available in all reconstruction planes. Artefacts caused by restorative dental materials are less accentuated in CBCT data sets. The system configuration was not powerful enough to generate sufficient images of intracranial structures. CONCLUSION: After the here-demonstrated encouraging preliminary results, the forensic indications that would be suitable for imaging with a 3D C-arm have to be defined. Promising seems the visualization local limited region of interest as the cervical spine or the facial skeleton.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This paper describes a method for DRR generation as well as for volume gradients projection using hardware accelerated 2D texture mapping and accumulation buffering and demonstrates its application in 2D-3D registration of X-ray fluoroscopy to CT images. The robustness of the present registration scheme are guaranteed by taking advantage of a coarse-to-fine processing of the volume/image pyramids based on cubic B-splines. A human cadaveric spine specimen together with its ground truth was used to compare the present scheme with a purely software-based scheme in three aspects: accuracy, speed, and capture ranges. Our experiments revealed an equivalent accuracy and capture ranges but with much shorter registration time with the present scheme. More specifically, the results showed 0.8 mm average target registration error, 55 second average execution time per registration, and 10 mm and 10° capture ranges for the present scheme when tested on a 3.0 GHz Pentium 4 computer.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Dental identification is the most valuable method to identify human remains in single cases with major postmortem alterations as well as in mass casualties because of its practicability and demanding reliability. Computed tomography (CT) has been investigated as a supportive tool for forensic identification and has proven to be valuable. It can also scan the dentition of a deceased within minutes. In the present study, we investigated currently used restorative materials using ultra-high-resolution dual-source CT and the extended CT scale for the purpose of a color-encoded, in scale, and artifact-free visualization in 3D volume rendering. In 122 human molars, 220 cavities with 2-, 3-, 4- and 5-mm diameter were prepared. With presently used filling materials (different composites, temporary filling materials, ceramic, and liner), these cavities were restored in six teeth for each material and cavity size (exception amalgam n = 1). The teeth were CT scanned and images reconstructed using an extended CT scale. Filling materials were analyzed in terms of resulting Hounsfield units (HU) and filling size representation within the images. Varying restorative materials showed distinctively differing radiopacities allowing for CT-data-based discrimination. Particularly, ceramic and composite fillings could be differentiated. The HU values were used to generate an updated volume-rendering preset for postmortem extended CT scale data of the dentition to easily visualize the position of restorations, the shape (in scale), and the material used which is color encoded in 3D. The results provide the scientific background for the application of 3D volume rendering to visualize the human dentition for forensic identification purposes.