14 resultados para 371.899[82]
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background Urinary tract infections (UTI) are frequent in outpatients. Fast pathogen identification is mandatory for shortening the time of discomfort and preventing serious complications. Urine culture needs up to 48 hours until pathogen identification. Consequently, the initial antibiotic regimen is empirical. Aim To evaluate the feasibility of qualitative urine pathogen identification by a commercially available real-time PCR blood pathogen test (SeptiFast®) and to compare the results with dipslide and microbiological culture. Design of study Pilot study with prospectively collected urine samples. Setting University hospital. Methods 82 prospectively collected urine samples from 81 patients with suspected UTI were included. Dipslide urine culture was followed by microbiological pathogen identification in dipslide positive samples. In parallel, qualitative DNA based pathogen identification (SeptiFast®) was performed in all samples. Results 61 samples were SeptiFast® positive, whereas 67 samples were dipslide culture positive. The inter-methodological concordance of positive and negative findings in the gram+, gram- and fungi sector was 371/410 (90%), 477/492 (97%) and 238/246 (97%), respectively. Sensitivity and specificity of the SeptiFast® test for the detection of an infection was 0.82 and 0.60, respectively. SeptiFast® pathogen identifications were available at least 43 hours prior to culture results. Conclusion The SeptiFast® platform identified bacterial DNA in urine specimens considerably faster compared to conventional culture. For UTI diagnosis sensitivity and specificity is limited by its present qualitative setup which does not allow pathogen quantification. Future quantitative assays may hold promise for PCR based UTI pathogen identification as a supplementation of conventional culture methods.
Resumo:
BACKGROUND: The objective of this study was to link expression patterns of B-cell-specific Moloney murine leukemia virus integration site 1 (Bmi-1) and p16 to patient outcome (recurrence and survival) in a cohort of 252 patients with oral and oropharyngeal squamous cell cancer (OSCC). METHODS: Expression levels of Bmi-1 and p16 in samples from 252 patients with OSCC were evaluated immunohistochemically using the tissue microarray method. Staining intensity was determined by calculating an intensity reactivity score (IRS). Staining intensity and the localization of expression within tumor cells (nuclear or cytoplasmic) were correlated with overall, disease-specific, and recurrence-free survival. RESULTS: The majority of cancers were localized in the oropharynx (61.1%). In univariate analysis, patients who had OSCC and strong Bmi-1 expression (IRS >10) had worse outcomes compared with patients who had low and moderate Bmi-1 expression (P = .008; hazard ratio [HR], 1.82; 95% confidence interval [CI], 1.167-2.838); this correlation was also observed for atypical cytoplasmic Bmi-1 expression (P = .001; HR, 2.164; 95% CI, 1.389-3.371) and for negative p16 expression (P < .001; HR, 0.292; 95% CI, 0.178-0.477). The combination of both markers, as anticipated, had an even stronger correlation with overall survival (P < .001; HR, 8.485; 95% CI, 4.237-16.994). Multivariate analysis demonstrated significant results for patients with oropharyngeal cancers, but not for patients with oral cavity tumors: Tumor classification (P = .011; HR, 1.838; 95%CI, 1.146-2.947) and the combined marker expression patterns (P < .001; HR, 6.254; 95% CI, 2.869-13.635) were correlated with overall survival, disease-specific survival (tumor classification: P = .002; HR, 2.807; 95% CI, 1.477-5.334; combined markers: P = .002; HR, 5.386; 95% CI, 1.850-15.679), and the combined markers also were correlated with recurrence-free survival (P = .001; HR, 8.943; 95% CI, 2.562-31.220). CONCLUSIONS: Cytoplasmic Bmi-1 expression, an absence of p16 expression, and especially the combination of those 2 predictive markers were correlated negatively with disease-specific and recurrence-free survival in patients with oropharyngeal cancer. Therefore, the current results indicate that these may be applicable as predictive markers in combination with other factors to select patients for more aggressive treatment and follow-up. Cancer 2011;. © 2011 American Cancer Society.
Resumo:
Serine residues of the human insulin receptor (HIR) may be phosphorylated and negatively regulate the insulin signal. We studied the impact of 16 serine residues in HIR by mutation to alanine and co-overexpression in human embryonic kidney (HEK) 293 cells together with the docking proteins insulin receptor substrate (IRS)-1, IRS-2, or (SHC) Src homologous and collagen-like. As a control, IRS-1 was also cotransfected with an HIR with a juxtamembrane deletion (HIR delta JM) and therefore not containing the domain required for interaction with IRS-1. Coexpression of HIR with IRS-1, IRS-2, and SHC strongly enhanced tyrosine phosphorylation of these proteins. A similar increase in tyrosine phosphorylation was observed in cells overexpressing IRS-1, IRS-2, or SHC together with all HIR mutants except HIR delta JM and a mutant carrying exchanges of serines 1177, 1178, and 1182 to alanine (HIR1177/78/82), although this mutant showed normal autophosphorylation. Analysis of total cell lysates with anti-phosphotyrosine antibodies showed that in addition to the overexpressed substrates, other cellular proteins displayed reduced levels of tyrosine phosphorylation in these cells. To study consequences for phosphatidylinositol 3-kinase (PI 3-kinase) activation, we established stable NIH3T3 fibroblast cell lines overexpressing wild-type HIR, HIR1177/78/82, and other HIR mutants as the control. Again, HIR1177/78/82 showed normal autophosphorylation but showed a clear decrease in tyrosine phosphorylation of endogenous IRS-1 and activation of PI 3-kinase. This decrease in kinase activity also occurred in an in vitro kinase assay towards recombinant IRS-1. Finally, we performed a separation of the phosphopeptides by high-performance liquid chromatography and could not detect any differences in the profiles of HIR and HIR1177/78/82. In conclusion, we have defined a region in HIR that is important for substrate phosphorylation but not autophosphorylation. Therefore, this mutant may provide new insights into the mechanism of kinase activation and substrate phosphorylation.