9 resultados para 350.2
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The pulmonary route is very attractive for drug delivery by inhalation. In this regard, nanoparticulate drug delivery systems, designed as multifunctional engineered nanoparticles, are very promising since they combine several opportunities like a rather uniform distribution of drug dose among all ventilated alveoli allowing for uniform cellular drug internalization. However, although the field of nanomedicine offers multiple opportunities, it still is in its infancy and the research has to proceed in order to obtain a specific targeting of the drug combined with minimum side effects. If inhaled nanoparticulate drug delivery systems are deposited on the pulmonary surfactant, they come into contact with phospholipids and surfactant proteins. It is highly likely that the interaction of nanoparticulate drug delivery systems with surfactant phospholipids and proteins will be able to mediate/modulate the further fate of this specific drug delivery system. In the present comment, we discuss the potential interactions of nanoparticulate drug delivery systems with pulmonary surfactant as well as the potential consequences of this interaction.
Resumo:
The clinical use of anthracyclines in cancer therapy is limited by dose-dependent cardiotoxicity that involves cardiomyocyte injury and death. We have tested the hypothesis that anthracyclines affect protein degradation pathways in adult cardiomyocytes. To this aim, we assessed the effects of doxorubicin (Doxo) on apoptosis, autophagy and the proteasome/ubiquitin system in long-term cultured adult rat cardiomyocytes. Accumulation of poly-ubiquitinated proteins, increase of cathepsin-D-positive lysosomes and myofibrillar degradation were observed in Doxo-treated cardiomyocytes. Chymotrypsin-like activity of the proteasome was initially increased and then inhibited by Doxo over a time-course of 48 h. Proteasome 20S proteins were down-regulated by higher doses of Doxo. The expression of MURF-1, an ubiquitin-ligase specifically targeting myofibrillar proteins, was suppressed by Doxo at all concentrations measured. Microtubule-associated protein 1 light chain 3B (LC3)-positive punctae and both LC3-I and -II proteins were induced by Doxo in a dose-dependent manner, as confirmed by using lentiviral expression of green fluorescence protein bound to LC3 and live imaging. The lysosomotropic drug chloroquine led to autophagosome accumulation, which increased with concomitant Doxo treatment indicating enhanced autophagic flux. We conclude that Doxo causes a downregulation of the protein degradation machinery of cardiomyocytes with a resulting accumulation of poly-ubiquitinated proteins and autophagosomes. Although autophagy is initially stimulated as a compensatory response to cytotoxic stress, it is followed by apoptosis and necrosis at higher doses and longer exposure times. This mechanism might contribute to the late cardiotoxicity of anthracyclines by accelerated aging of the postmitotic adult cardiomyocytes and to the susceptibility of the aging heart to anthracycline cancer therapy.
Resumo:
This study aimed to measure serum concentrations of five lectin-pathway components, mannan-binding lectin (MBL), M-ficolin, L-ficolin, H-ficolin, and MBL-associated serine protease-2 (MASP-2), in healthy neonates and children, to determine if they change with age and to compare them with serum concentrations in healthy adults. Concentrations were measured in 141 preterm and 30 term neonates, in 120 children including infants and adolescents, and in 350 adults (97 for L-ficolin) by inhouse time-resolved immunofluorometric assays or commercially available enzyme-linked immunosorbent assays. The adjacent categories method applying Wilcoxon-Mann-Whitney tests was used to determine age categories where concentrations differed significantly. Displaying serum concentration vs. age, an inverted-U shape (higher concentrations in children than in neonates and adults) was found for MBL and the ficolins, and an S-shape for MASP-2. Serum concentrations of all five lectin-pathway components were significantly lower in preterm neonates <32-wk gestational age compared to older neonates, infants, and children. Only M-ficolin in children >1 yr and H-ficolin in term neonates and in children were found to be comparable with adult values. MBL, M-, L-, and H-ficolin, and MASP-2 serum concentrations show important changes with age. The respective normal ranges for adults should not be used in the pediatric population. The age-specific pediatric ranges established here may be used instead.
Resumo:
HIV-infected women are at increased risk of cervical intra-epithelial neoplasia (CIN) and invasive cervical cancer (ICC), but it has been difficult to disentangle the influences of heavy exposure to HPV infection, inadequate screening, and immunodeficiency. A case-control study including 364 CIN2/3 and 20 ICC cases matched to 1,147 controls was nested in the Swiss HIV Cohort Study (1985-2013). CIN2/3 risk was significantly associated with low CD4+ cell counts, whether measured as nadir (odds ratio (OR) per 100-cell/μL decrease=1.15, 95% CI: 1.08, 1.22), or at CIN2/3 diagnosis (1.10, 95% CI: 1.04, 1.16). An association was evident even for nadir CD4+ 200-349 versus ≥350 cells/μL (OR=1.57, 95% CI: 1.09, 2.25). After adjustment for nadir CD4+, a protective effect of >2-year cART use was seen against CIN2/3 (OR versus never cART use=0.64, 95% CI: 0.42, 0.98). Despite low study power, similar associations were seen for ICC, notably with nadir CD4+ (OR for 50 versus >350 cells/μL= 11.10, 95% CI: 1.24, 100). HPV16-L1 antibodies were significantly associated with CIN2/3, but HPV16-E6 antibodies were nearly exclusively detected in ICC. In conclusion, worsening immunodeficiency, even at only moderately decreased CD4+ cell counts (200-349 CD4+ cells/μL), is a significant risk factor for CIN2/3 and cervical cancer. This article is protected by copyright. All rights reserved.
Resumo:
The immunomodulatory drug FTY720 is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that requires activation by sphingosine kinase 2 (SK-2) to induce T cell homing to secondary lymphoid tissue. In this study, we have investigated the role of SK-2 in experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice. We show that SK-2 deficiency reduced clinical symptoms of EAE. Furthermore, in SK-2-deficient mice, the protective effect of FTY720 on EAE was abolished, while the non-prodrug FTY720-derivative ST-968 was still fully active. Protection was paralleled by reduced numbers of T-lymphocytes in blood and a reduced blood-brain-barrier leakage. This correlated with reduced mRNA expression of ICAM-1, VCAM-1, but enhanced expression of PECAM-1. A similar regulation of permeability and of PECAM-1 was seen in primary cultures of isolated mouse brain vascular endothelial cells and in a human immortalized cell line upon SK-2 knockdown. In summary, these data demonstrated that deletion of SK-2 exerts a protective effect on the pathogenesis of EAE in C57BL/6 mice and that SK-2 is essential for the protective effect of FTY720 but not of ST-968. Thus, ST-968 is a promising novel immunomodulatory compound that may be a valuable alternative to FTY720 under conditions where SK-2 activity is limited.