21 resultados para 305-day lactation yield
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
In dairy cows, milk yield increases rapidly after parturition until a peak at around wk 6 of lactation. However, the description of the shape of the lactation curve is commonly based on weekly average milk yields. For a more detailed analysis of the milk production curve from the very beginning of lactation including the colostral period and the effect of colostrum yield on further lactational performance, the first 10 milkings after parturition, daily milk yields from d 1 to 28 of lactation, and the cumulative milk production on d 100 to 305 of lactation were investigated in 17 primiparous and 39 multiparous cows milked twice daily. Milk yield at the first milking after parturition (colostrum) ranged from 1.3 to 20.7kg (Δ=19.4kg) in multiparous and from 1.8 to 10.9kg in primiparous animals (Δ=9.1kg). At the tenth milking, milk production ranged from 9.2 to 21.5kg (Δ=12.3kg) in multiparous and from 7.0 to 15.2kg (Δ=8.2kg) in primiparous animals. Immediately after parturition, daily milk production increased rapidly, but after approximately 1wk in lactation, the slope of the daily milk production curve flattened and continued more linear. A nonlinear regression equation was used to determine this timely change, which occurred earlier in primiparous (d 6.9±0.3) than in multiparous cows (d 8.2±0.2). The correlation between the amount of first colostrum and milk production during further lactation decreased already from 0.47 on d 5 to 0.32 on d 14. In multiparous cows, the correlation between total milk production of the previous 305d standard lactation and the amount of first colostrum was not significant (correlation=0.29), whereas the correlation with the daily production increased from 0.45 on d 5 to 0.69 on d 14. However, in primiparous animals, correlations between first-colostrum yield and daily milk yields up to d 28 of lactation were not significant, possibly due to the smaller sample size compared with multiparous animals. First-colostrum yield and cumulative milk production of 100, 200, and 305 lactation days were not significantly correlated in multiparous and primiparous cows. In conclusion, the milk production during the first few milkings is widely independent from the overall production level of a cow. Potentially, genetic selection toward lower milk yield during the very first days after parturition at a simultaneously high lactational performance may be a tool to ensure sufficient colostrum quality and to reduce the metabolic load around parturition.
Resumo:
Organic dairy farms (OP; n=60) and conventional dairy farms (integrated production, IP; n=60), matched in size, location, and agricultural zone (altitude), were studied for possible differences in management, feeding, production, reproduction and udder health. OP and IP farms were similar in size (17.7 and 16.9 ha), milk quota (65900 and 70,000 kg/year), cow number (14 and 15), cow age (5.3 and 5.2 years), housing of cows of the Simmental x Red Holstein or Holstein breeds (87 and 75%; 45 and 60%), but differed significantly with respect to loose housing systems (18 and 7%), outside paddocks (98 and 75%), energy-corrected 305-d milk yield (5,695 and 6,059 kg), milk protein content (31.8 and 32.7 g/kg), use of bucket milking systems (73 and 33%), observance of regular (12-h) milking intervals (47 and 68%), routine application of the California-Mastitis-Test (10 and 28%), teat dipping after milking (25 and 43%) and blanket dry cow treatments (0 and 45%). Milk somatic cell counts on OP and IP farms (119 000 and 117,000/mL) and reproduction data were similar and there were no significant differences between OP and IP farms as concerns available feeds, planning and management of feeding. Alternative veterinary treatments were used more often on OP than IP farms (55 and 17%). Main causes for cow replacements on OP and IP farms were fertility disorders (both 45%), age (40 and 42%), sale (30 and 37%) and udder health (35 and 13%).Between OP and IP Swiss dairy farms thus relatively few larger differences were found.
Resumo:
Dairy cows with high and low plasma non-esterified fatty acid (NEFA) concentrations in early lactation were compared for plasma parameters and mRNA expression of genes in liver and subcutaneous adipose tissue. The study involved 16 multiparous dairy cows with a plasma NEFA concentration of >500 mumol/l [n = 8, high NEFA (HNEFA)] and <140 mumol/l [n = 8, low NEFA (LNEFA)] in the first week post-partum (pp). Blood samples, adipose and liver tissues were collected on day 1 (+1d) and at week 3 pp (+3wk). Blood plasma was assayed for concentrations of metabolites and hormones. Subcutaneous adipose and liver tissues were analysed for mRNA abundance by real-time qRT-PCR encoding parameters related to lipid metabolism. Results showed that mean daily milk yield and milk fat quantity were higher in HNEFA than in LNEFA cows (p < 0.01), and the NEB was more negative in HNEFA than in LNEFA in +3wk too (p < 0.05). HNEFA cows had slightly lower (p < 0.1) insulin concentrations than LNEFA cows across the study period, and the body condition score decreased more from +1d to +3wk in HNEFA than in LNEFA (p = 0.09). The mRNA abundance of genes in the liver related to fatty acid oxidation (carnitine palmitoyltransferase 2 and very long chain acyl-coenzyme A dehydrogenase) and ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2) were lower in HNEFA than in LNEFA cows. No differences between the two groups were observed for mRNA expression of genes in adipose tissue. The number of calculated significant correlation coefficients (moderately strong) between parameters in the liver and in adipose tissue was nearly similar on +1d, and higher for HNEFA compared with LNEFA cows in +3wk. In conclusion, dairy cows with high compared with low plasma NEFA concentrations in early lactation show differentially synchronized mRNA expression of genes in adipose tissue and liver in +3wk that suggests a different orchestrated homeorhetic regulation of lipid metabolism.
Resumo:
Oxytocin (OT) release and lactation performance in primiparous Syrian Shami cows were evaluated in response to two different machine milking regimes. Six cows were milked in the presence of the calves (PC) and subsequently suckled, whereas six cows were exclusively machine milked without the presence of their calves (WC) until day 91 post partum. Milk yield and milk constituents were determined weekly. The degree of udder evacuation was determined by the succeeding removal of residual milk. PC released OT during the milking process, whereas in WC no OT release was detected throughout the milking process. Consequently, the residual milk fraction was much lower in PC than in WC (11% v. 58%, P<0.05) and daily milk yield until day 91 post partum was higher in PC than in WC (12.6+/-0.3 v. 7.1+/-0.4 kg, P<0.05). In conclusion, Syrian Shami cattle are not suitable to be exclusively machine milked without the presence of their calves.
Resumo:
An experiment was conducted to determine the effect of grazing versus zero-grazing on energy expenditure (EE), feeding behaviour and physical activity in dairy cows at different stages of lactation. Fourteen Holstein cows were subjected to two treatments in a repeated crossover design with three experimental series (S1, S2, and S3) reflecting increased days in milk (DIM). At the beginning of each series, cows were on average at 38, 94 and 171 (standard deviation (SD) 10.8) DIM, respectively. Each series consisted of two periods containing a 7-d adaptation and a 7-d collection period each. Cows either grazed on pasture for 16–18.5 h per day or were kept in a freestall barn and had ad libitum access to herbage harvested from the same paddock. Herbage intake was estimated using the double alkane technique. On each day of the collection period, EE of one cow in the barn and of one cow on pasture was determined for 6 h by using the 13C bicarbonate dilution technique, with blood sample collection done either manually in the barn or using an automatic sampling system on pasture. Furthermore, during each collection period physical activity and feeding behaviour of cows were recorded over 3 d using pedometers and behaviour recorders. Milk yield decreased with increasing DIM (P<0.001) but was similar with both treatments. Herbage intake was lower (P<0.01) for grazing cows (16.8 kg dry matter (DM)/d) compared to zero-grazing cows (18.9 kg DM/d). The lowest (P<0.001) intake was observed in S1 and similar intakes were observed in S2 and S3. Within the 6-h measurement period, grazing cows expended 19% more (P<0.001) energy (319 versus 269 kJ/kg metabolic body size (BW0.75)) than zero-grazing cows and differences in EE did not change with increasing DIM. Grazing cows spent proportionally more (P<0.001) time walking and less time standing (P<0.001) and lying (P<0.05) than zero-grazing cows. The proportion of time spent eating was greater (P<0.001) and that of time spent ruminating was lower (P<0.05) for grazing cows compared to zero-grazing cows. In conclusion, lower feed intake along with the unchanged milk production indicates that grazing cows mobilized body reserves to cover additional energy requirements which were at least partly caused by more physical activity. However, changes in cows׳ behaviour between the considered time points during lactation were too small so that differences in EE remained similar between treatments with increasing DIM.
Resumo:
A long-term study over 25 months was conducted to evaluate the effects of genetically modified corn on performance of lactating dairy cows. Thirty-six dairy cows were assigned to two feeding groups and fed with diets based on whole-crop silage, kernels and whole-crop cobs from Bt-corn (Bt-MON810) or its isogenic not genetically modified counterpart (CON) as main components. The study included two consecutive lactations. There were no differences in the chemical composition and estimated net energy content of Bt-MON810 and CON corn components and diets. CON feed samples were negative for the presence of Cry1Ab protein, while in Bt-MON810 feed samples the Cry1Ab protein was detected. Cows fed Bt-MON810 corn had a daily Cry1Ab protein intake of 6.0 mg in the first lactation and 6.1 mg in the second lactation of the trial. Dry matter intake (DMI) was 18.8 and 20.7 kg/cow per day in the first and the second lactation of the trial, with no treatment differences. Similarly, milk yield (23.8 and 29.0 kg/cow per day in the first and the second lactation of the trial) was not affected by dietary treatment. There were no consistent effects of feeding MON810 or its isogenic CON on milk composition or body condition. Thus, the present long-term study demonstrated the compositional and nutritional equivalence of Bt-MON810 and its isogenic CON.
Resumo:
The current study investigated the effects of supplementing rumen-protected choline (RPC) on metabolic profile, selected liver constituents and transcript levels of selected enzymes, transcription factors and nuclear receptors involved in mammary lipid metabolism in dairy goats. Eight healthy lactating goats were studied: four received no choline supplementation (CTR group) and four received 4g RPC chloride/day (RPC group). The treatment was administered individually starting 4 weeks before expected kidding and continuing for 4 weeks after parturition. In the first month of lactation, milk yield and composition were measured weekly. On days 7, 14, 21 and 27 of lactation, blood samples were collected and analysed for glucose, beta-hydroxybutyrate, non-esterified fatty acids and cholesterol. On day 28 of lactation, samples of liver and mammary gland tissue were obtained. Liver tissue was analysed for total lipid and DNA content; mammary tissue was analysed for transcripts of lipoprotein lipase (LPL), fatty acid synthase (FAS), sterol regulatory binding proteins 1 and 2, peroxisome proliferator-activated receptor gamma and liver X receptor alpha. Milk yield was very similar in the two groups, but R PC goats had lower (P < 0.05) plasma beta-hydroxybutyrate. The total lipid content of liver was unaffected (P = 0.890), but the total lipid/DNA ratio was lower (both P < 0.05) in RPC than CTR animals. Choline had no effect on the expression of the mammary gland transcripts involved in lipid metabolism. The current plasma and liver data indicate that choline has a positive effect on liver lipid metabolism, whereas it appears to have little effect on transcript levels in mammary gland of various proteins involved in lipid metabolism. Nevertheless, the current results were obtained from a limited number of animals, and choline requirement and function in lactating dairy ruminants deserve further investigation.
Resumo:
In most mammals, prolactin (PRL) is essential for maintaining lactation, and yet the short-term suppression of PRL during established lactation by bromocriptine has produced inconsistent effects on milk yield in cows and goats. To assess the effect of the long-term inhibition of PRL release in lactating dairy cows, 5 Holstein cows in early lactation received daily intramuscular injections of 1mg of the PRL-release inhibitor quinagolide for 9 wk. Four control cows received the vehicle (water) only. During the last week of the treatments, one udder half was milked once a day (1x) and the other twice a day (2x). Blood samples were harvested at milking in wk -1, 1, 4, and 8. The daily injections of quinagolide reduced milking-induced PRL release but not the basal PRL concentration. Quinagolide induced a faster decline in milk production, which was about 5.3 kg/d lower in the quinagolide-treated cows during the last 4 wk of treatment. During wk 9, the inhibition of milk production by quinagolide was maintained in the udder half that was milked 2x but not in the half milked 1x. Milk production was significantly correlated with the quantity of PRL released at milking. Quinagolide did not affect the release of oxytocin at milking. Serum concentration of insulin-like growth factor-1 was not affected by treatment or correlated with milk production. Serum concentrations of leptin and the calciotropic hormone stanniocalcin were not affected by the treatment. In conclusion, the chronic administration of the PRL-release inhibitor quinagolide decreases milk production in dairy cows. The effect is likely the result of the reduced release of milking-induced PRL and is modulated at the level of the gland by milking frequency.
Resumo:
The effect of treatment with eprinomectin on milk yield, milk composition and somatic cell counts (SCCs) was studied in 105 dairy cows located on seven farms in South Tyrol, Italy. On each farm, half of the animals were treated with eprinomectin and the other half were used as an untreated control group. Three test day records per animal were obtained before treatment (days -117, -75 and -33) and another three test day records were obtained after treatment (days 22, 62 and 131). Test day records comprised milk yield, milk composition, SCC and days in milk. On the day of treatment, blood samples and faecal samples were taken for parasitological analysis. Cows with positive faecal egg counts yielded less milk. A significant effect of eprinomectin on milk yield was observed after treatment and was most pronounced on the second and the third test days after treatment (+1.90 kg [P=0.002] and +2.63 kg [P<0.001], respectively). Furthermore, a significant decrease in SCC was observed on the second test day after treatment.
Resumo:
Gene expression of adipose factors, which may be part of the mechanisms that underlie insulin sensitivity, were studied in dairy cows around parturition. Subcutaneous fat biopsies and blood samples were taken from 27 dairy cows in week 8 antepartum (a.p.), on day 1 postpartum (p.p.) and in week 5 p.p. In the adipose tissue samples, mRNA was quantified by real-time reverse transcription polymerase chain reaction for tumour necrosis factor alpha (TNFalpha), insulin-independent glucose transporter (GLUT1), insulin-responsive glucose transporter (GLUT4), insulin receptor, insulin receptor substrate 1 (IRS1), insulin receptor substrate 2 (IRS2), regulatory subunit of phosphatidylinositol-3 kinase (p85) and catalytic subunit of phosphatidylinositol-3 kinase. Blood plasma was assayed for concentrations of glucose, beta-hydroxybutyric acid, non-esterified fatty acids (NEFA) and insulin. Plasma parameters followed a pattern typically observed in dairy cows. Gene expression changes were observed, but there were no changes in TNFalpha concentrations, which may indicate its local involvement in catabolic adaptation of adipose tissue. Changes in GLUT4 and GLUT1 mRNA abundance may reflect their involvement in reduced insulin sensitivity and in sparing glucose for milk synthesis in early lactation. Unchanged gene expression of IRS1, IRS2 and p85 over time may imply a lack of their involvement in terms of insulin sensitivity dynamics. Alternatively, it may indicate that post-transcriptional modifications of these factors came into play and may have concealed an involvement.
Resumo:
The purpose of this study was to investigate variations in hepatic regulation of metabolism during the dry period, after parturition, and in early lactation in dairy cows. For this evaluation, cows were divided into 2 groups based on the plasma concentration of beta-hydroxybutyric acid (BHBA) in wk 4 postpartum (PP; group HB, BHBA >0.75 mmol/L; group LB, BHBA <0.75 mmol/L, respectively). Liver biopsies were obtained from 28 cows at drying off (mean 59 +/- 8 d antepartum), on d 1, and in wk 4 and 14 PP. Blood samples were collected every 2 wk during this entire period. Liver samples were analyzed for mRNA abundance of genes related to carbohydrate metabolism (pyruvate carboxylase, PC; phosphoenolpyruvate carboxykinase, PEPCK; citrate synthase, CS), fatty acid biosynthesis (ATP citrate lyase, ACLY) and oxidation (acyl-CoA synthetase long-chain, ACSL; carnitine palmitoyltransferase 1A, CPT 1A; carnitine palmitoyltransferase 2, CPT 2; acyl-coenzyme A dehydrogenase very long chain, ACADVL), cholesterol biosynthesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 1, HMGCS1), ketogenesis (3-hydroxy-3-methylglutaryl-coenzyme A synthase 2, HMGCS2), and of genes encoding the transcription factors peroxisome proliferator-activated receptor alpha (PPARalpha), peroxisome proliferator-activated receptor gamma (PPARgamma), and sterol regulatory element binding factor 1 (SREBF1). Blood plasma was assayed for concentrations of glucose, BHBA, nonesterified fatty acids, cholesterol, triglycerides, insulin, insulin-like growth factor-I, and thyroid hormones. In both groups, plasma parameters followed a pattern usually observed in dairy cows. However, changes were moderate and the energy balance in cows turned positive in wk 7 PP for both groups. Additionally, the energy balance and milk yield were similar for both groups after parturition onwards. Significant group effects were found at drying off, when plasma concentrations of triglycerides were higher in LB than in HB, and in wk 4 PP, when plasma concentrations of glucose and IGF-I were lower in HB than in LB. Similarly, moderate changes in mRNA expression of hepatic genes between the different time points were observed, although HB cows showed more adaptive performance than LB cows based on changes in mRNA expression of PEPCKc, PEPCKm, CS, CPT 1A, CPT 2, and PPARalpha. Part of the variation measured in this study was explained by parity. Significant Spearman rank correlation coefficients between the variables were not similar at each time point and were not similar between the groups at each time point, suggesting that metabolic regulation differs between cows. In conclusion, metabolic regulation in dairy cows is a dynamic system, and differs obviously between cows at different metabolic stages related to parturition.
Resumo:
Thirty-two multiparous Holstein cows were used to investigate the effects of chromium-l-methionine (Cr-Met) supplementation and dietary grain source on performance and lactation during the periparturient period. Cows were fed a total mixed ration consisting of either a barley-based diet (BBD) or a corn-based diet (CBD) from 21 d before anticipated calving through 28 d after calving. The Cr-Met was supplemented at dosages of 0 or 0.08 mg of Cr/kg of metabolic body weight. The study was designed as a randomized complete block design with 2 (Cr-Met levels) x 2 (grain sources) factorial arrangement. There was no Cr effect on prepartum dry matter intake (DMI) or postpartum DMI, body weight (BW), net energy balance, and whole tract apparent digestibility of nutrients. Prepartum DMI as a percentage of BW tended to increase with Cr-Met. Supplemental Cr-Met tended to increase milk yield whereas milk protein percentage decreased. Pre- and postpartum DMI, BW, net energy balance, milk yield, and milk composition were not affected by substituting ground barley with ground corn. The addition of Cr-Met increased prepartum DMI and tended to increase postpartum DMI of the BBD but not the CBD. The change in prepartum DMI was smaller when the BBD was supplemented with Cr-Met but remained unchanged when the CBD was supplemented with Cr-Met. Yields of crude protein and total solids in milk and prepartum digestibility of DM and organic matter tended to increase when Cr-Met was added to the BBD but remained unchanged when added to the CBD. Periparturient cows failed to respond to the grain source of the diet, whereas they showed greater response in milk yield to diets supplemented with Cr-Met. In conclusion, the present results demonstrate that the beneficial effect of Cr-Met supplementation during the periparturient period to improve feed intake may depend on the grain source of the diet.
Resumo:
The plant PTR/NRT1 (peptide transporter/nitrate transporter 1) gene family comprises di/tripeptide and low-affinity nitrate transporters; some members also recognize other substrates such as carboxylates, phytohormones (auxin and abscisic acid), or defence compounds (glucosinolates). Little is known about the members of this gene family in rice (Oryza sativa L.). Here, we report the influence of altered OsPTR9 expression on nitrogen utilization efficiency, growth, and grain yield. OsPTR9 expression is regulated by exogenous nitrogen and by the day-night cycle. Elevated expression of OsPTR9 in transgenic rice plants resulted in enhanced ammonium uptake, promotion of lateral root formation and increased grain yield. On the other hand, down-regulation of OsPTR9 in a T-DNA insertion line (osptr9) and in OsPTR9-RNAi rice plants had the opposite effect. These results suggest that OsPTR9 might hold potential for improving nitrogen utilization efficiency and grain yield in rice breeding.
Resumo:
Fat mobilization to meet energy requirements during early lactation is inevitable because of insufficient feed intake, but differs greatly among high-yielding dairy cows. Therefore, we studied milk production, feed intake, and body condition as well as metabolic and endocrine changes in high-yielding dairy cows to identify variable strategies in metabolic and endocrine adaptation to overcome postpartum metabolic load attributable to milk production. Cows used in this study varied in fat mobilization around calving, as classified by mean total liver fat concentrations (LFC) postpartum. German Holstein cows (n=27) were studied from dry off until d 63 postpartum in their third lactation. All cows were fed the same total mixed rations ad libitum during the dry period and lactation. Plasma concentrations of metabolites and hormones were measured in blood samples taken at d 56, 28, 15, and 5 before expected calving and at d 1 and once weekly up to d 63 postpartum. Liver biopsies were taken on d 56 and 15 before calving, and on d 1, 14, 28, and 49 postpartum to measure LFC and glycogen concentrations. Cows were grouped accordingly to mean total LFC on d 1, 14, and 28 in high, medium, and low fat-mobilizing cows. Mean LFC (±SEM) differed among groups and were 351±14, 250±10, and 159±9 mg/g of dry matter for high, medium, and low fat-mobilizing cows, respectively, whereas hepatic glycogen concentrations postpartum were the highest in low fat-mobilizing cows. Cows in the low group showed the highest dry matter intake and the least negative energy balance postpartum, but energy-corrected milk yield was similar among groups. The decrease in body weight postpartum was greatest in high fat-mobilizing cows, but the decrease in backfat thickness was greatest in medium fat-mobilizing cows. Plasma concentrations of nonesterified fatty acids and β-hydroxybutyrate were highest around calving in high fat-mobilizing cows. Plasma triglycerides were highest in the medium group and plasma cholesterol concentrations were lowest in the high group at calving. During early lactation, the decrease in plasma glucose concentrations was greatest in the high group, and plasma insulin concentrations postpartum were highest in the low group. The revised quantitative insulin sensitivity check index values decreased during the transition period and postpartum, and were highest in the medium group. Plasma cortisol concentrations during the transition period and postpartum period and plasma leptin concentrations were highest in the medium group. In conclusion, cows adapted differently to the metabolic load and used variable strategies for homeorhetic regulation of milk production. Differences in fat mobilization were part of these strategies and contributed to the individual adaptation of energy metabolism to milk production.
Resumo:
Trans-10,cis-12 conjugated linoleic acid (CLA) supplementation causes milk fat depression in dairy cows, but CLA effects on glucose metabolism are not clear. The objective of the study was to investigate glucose metabolism, especially endogenous glucose production (eGP) and glucose oxidation (GOx), as well as hepatic genes involved in endogenous glucose production in Holstein cows supplemented either with 50 g of rumen-protected CLA (9% trans-10,cis-12 and 10% cis-9,trans-11; CLA; n=10) or 50 g of control fat (24% C18:2; Ctrl; n=10) from wk 2 before parturition to wk 9 of lactation. Animal performance data were recorded and blood metabolites and hormones were taken weekly from 2 wk before to 12 wk after parturition. During wk 3 and 9 after parturition, glucose tolerance tests were performed and eGP and GOx were measured by [U-(13)C] glucose infusion. Liver biopsies were taken at the same time to measure total fat and glycogen concentrations and gene expression of pyruvate carboxylase, cytosolic phosphoenolpyruvate carboxykinase, glucose-6-phosphatase, and carnitine palmitoyl-transferase 1. Conjugated linoleic acid feeding reduced milk fat, but increased milk lactose output; milk yield was higher starting 5 wk after parturition in CLA-fed cows than in Ctrl-fed cows. Energy balance was more negative during CLA supplementation, and plasma concentrations of glucose were higher immediately after calving in CLA-fed cows. Conjugated linoleic acid supplementation did not affect insulin release during glucose tolerance tests, but reduced eGP in wk 3, and eGP and GOx increased with time after parturition. Hepatic gene expression of cytosolic phosphoenolpyruvate carboxykinase tended to be lower in CLA-fed cows than in Ctrl-fed cows. In spite of lower eGP in CLA-fed cows, lactose output and plasma glucose concentrations were greater in CLA-fed cows than in Ctrl-fed cows. This suggests a CLA-related glucose sparing effect most likely due to lower glucose utilization for milk fat synthesis and probably because of a more efficient whole-body energy utilization in CLA-fed cows.