32 resultados para 2D electron system

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

The N-H center dot center dot center dot pi hydrogen bond is an important intermolecular interaction in many biological systems. We have investigated the infrared (IR) and ultraviolet (UV) spectra of the supersonic-jet cooled complex of pyrrole with benzene and benzene-d(6) (Pyr center dot Bz, Pyr center dot Bz-d(6)). DFT-D density functional, SCS-MP2 and SCS-CC2 calculations predict a T-shaped and (almost) C(s) symmetric structure with an N-H center dot center dot center dot pi hydrogen bond to the benzene ring. The pyrrole is tipped by omega(S(0)) = +/- 13 degrees relative to the surface normal of Bz. The N center dot center dot center dot ring distance is 3.13 angstrom. In the S(1) excited state, SCS-CC2 calculations predict an increased tipping angle omega(S(1)) = +/- 21 degrees. The IR depletion spectra support the T-shaped geometry: The NH stretch is redshifted by -59 cm(-1), relative to the "free" NH stretch of pyrrole at 3531 cm(-1), indicating a moderately strong N-H center dot center dot center dot pi interaction. The interaction is weaker than in the (Pyr)(2) dimer, where the NH donor shift is -87 cm(-1) [Dauster et al., Phys. Chem. Chem. Phys., 2008, 10, 2827]. The IR C-H stretch frequencies and intensities of the Bz subunit are very similar to those of the acceptor in the (Bz)(2) dimer, confirming that Bz acts as the acceptor. While the S(1) <- S(0) electronic origin of Bz is forbidden and is not observable in the gas-phase, the UV spectrum of Pyr center dot Bz in the same region exhibits a weak 0(0)(0) band that is red-shifted by 58 cm(-1) relative to that of Bz (38 086 cm(-1)). The origin appears due to symmetry-breaking of the p-electron system of Bz by the asymmetric pyrrole NH center dot center dot center dot pi hydrogen bond. This contrasts with (Bz)(2), which does not exhibit a 0(0)(0) band. The Bz moiety in Pyr center dot Bz exhibits a 6a(0)(1) band at 0(0)(0) + 518 cm(-1) that is about 20x more intense than the origin band. The symmetry breaking by the NH center dot center dot center dot pi hydrogen bond splits the degeneracy of the v(6)(e(2g)) vibration, giving rise to 6a' and 6b' sub-bands that are spaced by similar to 6 cm(-1). Both the 0(0)(0) and 6(0)(1) bands of Pyr center dot Bz carry a progression in the low-frequency (10 cm(-1)) excited-state tipping vibration omega', in agreement with the change of the omega tipping angle predicted by SCS-MP2 and SCS-CC2 calculations.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Interplay of spin, charge, orbital and lattice degrees of freedom in oxide heterostructures results in a plethora of fascinating properties, which can be exploited in new generations of electronic devices with enhanced functionalities. The paradigm example is the interface between the two band insulators LaAlO3 and SrTiO3 that hosts a two-dimensional electron system. Apart from the mobile charge carriers, this system exhibits a range of intriguing properties such as field effect, superconductivity and ferromagnetism, whose fundamental origins are still debated. Here we use soft-X-ray angle-resolved photoelectron spectroscopy to penetrate through the LaAlO3 overlayer and access charge carriers at the buried interface. The experimental spectral function directly identifies the interface charge carriers as large polarons, emerging from coupling of charge and lattice degrees of freedom, and involving two phonons of different energy and thermal activity. This phenomenon fundamentally limits the carrier mobility and explains its puzzling drop at high temperatures.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Two-dimensional (2D) crystallisation of Membrane proteins reconstitutes them into their native environment, the lipid bilayer. Electron crystallography allows the structural analysis of these regular protein–lipid arrays up to atomic resolution. The crystal quality depends on the protein purity, ist stability and on the crystallisation conditions. The basics of 2D crystallisation and different recent advances are reviewed and electron crystallography approaches summarised. Progress in 2D crystallisation, sample preparation, image detectors and automation of the data acquisition and processing pipeline makes 2D electron crystallography particularly attractive for the structural analysis of membrane proteins that are too small for single-particle analyses and too unstable to form three-dimensional (3D) crystals.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The acquisition of conventional X-ray radiographs remains the standard imaging procedure for the diagnosis of hip-related problems. However, recent studies demonstrated the benefit of using three-dimensional (3D) surface models in the clinical routine. 3D surface models of the hip joint are useful for assessing the dynamic range of motion in order to identify possible pathologies such as femoroacetabular impingement. In this paper, we present an integrated system which consists of X-ray radiograph calibration and subsequent 2D/3D hip joint reconstruction for diagnosis and planning of hip-related problems. A mobile phantom with two different sizes of fiducials was developed for X-ray radiograph calibration, which can be robustly detected within the images. On the basis of the calibrated X-ray images, a 3D reconstruction method of the acetabulum was developed and applied together with existing techniques to reconstruct a 3D surface model of the hip joint. X-ray radiographs of dry cadaveric hip bones and one cadaveric specimen with soft tissue were used to prove the robustness of the developed fiducial detection algorithm. Computed tomography scans of the cadaveric bones were used to validate the accuracy of the integrated system. The fiducial detection sensitivity was in the same range for both sizes of fiducials. While the detection sensitivity was 97.96% for the large fiducials, it was 97.62% for the small fiducials. The acetabulum and the proximal femur were reconstructed with a mean surface distance error of 1.06 and 1.01 mm, respectively. The results for fiducial detection sensitivity and 3D surface reconstruction demonstrated the capability of the integrated system for 3D hip joint reconstruction from 2D calibrated X-ray radiographs.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human face is a vital component of our identity and many people undergo medical aesthetics procedures in order to achieve an ideal or desired look. However, communication between physician and patient is fundamental to understand the patient’s wishes and to achieve the desired results. To date, most plastic surgeons rely on either “free hand” 2D drawings on picture printouts or computerized picture morphing. Alternatively, hardware dependent solutions allow facial shapes to be created and planned in 3D, but they are usually expensive or complex to handle. To offer a simple and hardware independent solution, we propose a web-based application that uses 3 standard 2D pictures to create a 3D representation of the patient’s face on which facial aesthetic procedures such as filling, skin clearing or rejuvenation, and rhinoplasty are planned in 3D. The proposed application couples a set of well-established methods together in a novel manner to optimize 3D reconstructions for clinical use. Face reconstructions performed with the application were evaluated by two plastic surgeons and also compared to ground truth data. Results showed the application can provide accurate 3D face representations to be used in clinics (within an average of 2 mm error) in less than 5 min.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, a new cruciform donor–acceptor molecule 2,2'-((5,5'-(3,7-dicyano-2,6-bis(dihexylamino)benzo[1,2-b:4,5-b']difuran-4,8-diyl)bis(thiophene-5,2-diyl))bis (methanylylidene))dimalononitrile (BDFTM) is reported. The compound exhibits both remarkable solid-state red emission and p-type semiconducting behavior. The dual functions of BDFTM are ascribed to its unique crystal structure, in which there are no intermolecular face-to-face π–π interactions, but the molecules are associated by intermolecular CN…π and H-bonding interactions. Firstly, BDFTM exhibits aggregation-induced emission; that is, in solution, it is almost non-emissive but becomes significantly fluorescent after aggregation. The emission quantum yield and average lifetime are measured to be 0.16 and 2.02 ns, respectively. Crystalline microrods and microplates of BDFTM show typical optical waveguiding behaviors with a rather low optical loss coefficient. Moreover, microplates of BDFTM can function as planar optical microcavities which can confine the emitted photons by the reflection at the crystal edges. Thin films show an air-stable p-type semiconducting property with a hole mobility up to 0.0015 cm2V−1s−1. Notably, an OFET with a thin film of BDFTM is successfully utilized for highly sensitive and selective detection of H2S gas (down to ppb levels).

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The bacterial phosphoenolpyruvate: sugar phosphotransferase system serves the combined uptake and phosphorylation of carbohydrates. This structurally and functionally complex system is composed of several conserved functional units that, through a cascade of phosphorylated intermediates, catalyze the transfer of the phosphate moiety from phosphoenolpyruvate to the substrate, which is bound to the integral membrane domain IIC. The wild-type glucose-specific IIC domain (wt-IIC(glc)) of Escherichia coli was cloned, overexpressed and purified for biochemical and functional characterization. Size-exclusion chromatography and scintillation-proximity binding assays showed that purified wt-IIC(glc) was homogenous and able to bind glucose. Crystallization was pursued following two different approaches: (i) reconstitution of wt-IIC(glc) into a lipid bilayer by detergent removal through dialysis, which yielded tubular 2D crystals, and (ii) vapor-diffusion crystallization of detergent-solubilized wt-IIC(glc), which yielded rhombohedral 3D crystals. Analysis of the 2D crystals by cryo-electron microscopy and the 3D crystals by X-ray diffraction indicated resolutions of better than 6Å and 4Å, respectively. Furthermore, a complete X-ray diffraction data set could be collected and processed to 3.93Å resolution. These 2D and 3D crystals of wt-IIC(glc) lay the foundation for the determination of the first structure of a bacterial glucose-specific IIC domain.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Lamellar bodies are the storage sites for lung surfactant within type II alveolar epithelial cells. The structure-function models of lamellar bodies are based on microscopic analyses of chemically fixed tissue. Despite available alternative fixation methods that are less prone to artifacts, such as cryofixation by high-pressure freezing, the nature of the lung, being mostly air filled, makes it difficult to take advantage of these improved methods. In this paper, we propose a new approach and show for the first time the ultrastructure of intracellular lamellar bodies based on cryo-electron microscopy of vitreous sections in the range of nanometer resolution. Thus, unspoiled by chemical fixation, dehydration and contrasting agents, a close to native structure is revealed. Our approach uses perfluorocarbon to substitute the air in the alveoli. Lung tissue was subsequently high-pressure frozen, cryosectioned and observed in a cryo-electron microscope. The lamellar bodies clearly show a tight lamellar morphology. The periodicity of these lamellae was 7.3 nm. Lamellar bifurcations were observed in our cryosections. The technical approach described in this paper allows the examination of the native cellular ultrastructure of the surfactant system under near in vivo conditions, and therefore opens up prospectives for scrutinizing various theories of lamellar body biogenesis, exocytosis and recycling.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Supramolecular two-dimensional engineering epitomizes the design of complex molecular architectures through recognition events in multicomponent self-assembly. Despite being the subject of in-depth experimental studies, such articulated phenomena have not been yet elucidated in time and space with atomic precision. Here we use atomistic molecular dynamics to simulate the recognition of complementary hydrogen-bonding modules forming 2D porous networks on graphite. We describe the transition path from the melt to the crystalline hexagonal phase and show that self-assembly proceeds through a series of intermediate states featuring a plethora of polygonal types. Finally, we design a novel bicomponent system possessing kinetically improved self-healing ability in silico, thus demonstrating that a priori engineering of 2D self-assembly is possible.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we propose a new system that allows reliable acetabular cup placement when the THA is operated in lateral approach. Conceptually it combines the accuracy of computer-generated patient-specific morphology information with an easy-to-use mechanical guide, which effectively uses natural gravity as the angular reference. The former is achieved by using a statistical shape model-based 2D-3D reconstruction technique that can generate a scaled, patient-specific 3D shape model of the pelvis from a single conventional anteroposterior (AP) pelvic X-ray radiograph. The reconstructed 3D shape model facilitates a reliable and accurate co-registration of the mechanical guide with the patient’s anatomy in the operating theater. We validated the accuracy of our system by conducting experiments on placing seven cups to four pelvises with different morphologies. Taking the measurements from an image-free navigation system as the ground truth, our system showed an average accuracy of 2.1 ±0.7 o for inclination and an average accuracy of 1.2 ±1.4 o for anteversion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The glucose transporter IICB of the Escherichia coli phosphotransferase system (PTS) consists of a polytopic membrane domain (IIC) responsible for substrate transport and a hydrophilic C-terminal domain (IIB) responsible for substrate phosphorylation. We have overexpressed and purified a triple mutant of IIC (mut-IIC), which had recently been shown to be suitable for crystallization purposes. Mut-IIC was homodimeric as determined by blue native-PAGE and gel-filtration, and had an eyeglasses-like structure as shown by negative-stain transmission electron microscopy (TEM) and single particle analysis. Glucose binding and transport by mut-IIC, mut-IICB and wildtype-IICB were compared with scintillation proximity and in vivo transport assays. Binding was reduced and transport was impaired by the triple mutation. The scintillation proximity assay allowed determination of substrate binding, affinity and specificity of wildtype-IICB by a direct method. 2D crystallization of mut-IIC yielded highly-ordered tubular crystals and made possible the calculation of a projection structure at 12Å resolution by negative-stain TEM. Immunogold labeling TEM revealed the sidedness of the tubular crystals, and high-resolution atomic force microscopy the surface structure of mut-IIC. This work presents the structure of a glucose PTS transporter at the highest resolution achieved so far and sets the basis for future structural studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Structural analyses of heterologously expressed mammalian membrane proteins remain a great challenge given that microgram to milligram amounts of correctly folded and highly purified proteins are required. Here, we present a novel method for the expression and affinity purification of recombinant mammalian and in particular human transport proteins in Xenopus laevis frog oocytes. The method was validated for four human and one murine transporter. Negative stain transmission electron microscopy (TEM) and single particle analysis (SPA) of two of these transporters, i.e., the potassium-chloride cotransporter 4 (KCC4) and the aquaporin-1 (AQP1) water channel, revealed the expected quaternary structures within homogeneous preparations, and thus correct protein folding and assembly. This is the first time a cation-chloride cotransporter (SLC12) family member is isolated, and its shape, dimensions, low-resolution structure and oligomeric state determined by TEM, i.e., by a direct method. Finally, we were able to grow 2D crystals of human AQP1. The ability of AQP1 to crystallize was a strong indicator for the structural integrity of the purified recombinant protein. This approach will open the way for the structure determination of many human membrane transporters taking full advantage of the Xenopus laevis oocyte expression system that generally yields robust functional expression.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this chapter the methodological bases are provided to achieve subnanometer resolution on two-dimensional (2D) membrane protein crystals by atomic force microscopy (AFM). This is outlined in detail with the example of AFM studies of the outer membrane protein F (OmpF) from the bacterium Escherichia coli (E. coli). We describe in detail the high-resolution imaging of 2D OmpF crystals in aqueous solution and under near-physiological conditions. The topographs of OmpF, and stylus effects and artifacts encountered when imaging by AFM are discussed.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Numerous bacterial pathogens subvert cellular functions of eukaryotic host cells by the injection of effector proteins via dedicated secretion systems. The type IV secretion system (T4SS) effector protein BepA from Bartonella henselae is composed of an N-terminal Fic domain and a C-terminal Bartonella intracellular delivery domain, the latter being responsible for T4SS-mediated translocation into host cells. A proteolysis resistant fragment (residues 10-302) that includes the Fic domain shows autoadenylylation activity and adenylyl transfer onto Hela cell extract proteins as demonstrated by autoradiography on incubation with α-[(32)P]-ATP. Its crystal structure, determined to 2.9-Å resolution by the SeMet-SAD method, exhibits the canonical Fic fold including the HPFxxGNGRxxR signature motif with several elaborations in loop regions and an additional β-rich domain at the C-terminus. On crystal soaking with ATP/Mg(2+), additional electron density indicated the presence of a PP(i) /Mg(2+) moiety, the side product of the adenylylation reaction, in the anion binding nest of the signature motif. On the basis of this information and that of the recent structure of IbpA(Fic2) in complex with the eukaryotic target protein Cdc42, we present a detailed model for the ternary complex of Fic with the two substrates, ATP/Mg(2+) and target tyrosine. The model is consistent with an in-line nucleophilic attack of the deprotonated side-chain hydroxyl group onto the α-phosphorus of the nucleotide to accomplish AMP transfer. Furthermore, a general, sequence-independent mechanism of target positioning through antiparallel β-strand interactions between enzyme and target is suggested.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background Numerous interactions between the coagulation and complement systems have been shown. Recently, links between coagulation and mannan-binding lectin-associated serine protease-1 (MASP-1) of the complement lectin pathway have been proposed. Our aim was to investigate MASP-1 activation of factor XIII (FXIII), fibrinogen, prothrombin, and thrombin-activatable fibrinolysis inhibitor (TAFI) in plasma-based systems, and to analyse effects of MASP-1 on plasma clot formation, structure and lysis. Methodology/Principal Findings We used a FXIII incorporation assay and specific assays to measure the activation products prothrombin fragment F1+2, fibrinopeptide A (FPA), and activated TAFI (TAFIa). Clot formation and lysis were assessed by turbidimetric assay. Clot structure was studied by scanning electron microscopy. MASP-1 activated FXIII and, contrary to thrombin, induced FXIII activity faster in the Val34 than the Leu34 variant. MASP-1-dependent generation of F1+2, FPA and TAFIa showed a dose-dependent response in normal citrated plasma (NCP), albeit MASP-1 was much less efficient than FXa or thrombin. MASP-1 activation of prothrombin and TAFI cleavage were confirmed in purified systems. No FPA generation was observed in prothrombin-depleted plasma. MASP-1 induced clot formation in NCP, affected clot structure, and prolonged clot lysis. Conclusions/Significance We show that MASP-1 interacts with plasma clot formation on different levels and influences fibrin structure. Although MASP-1-induced fibrin formation is thrombin-dependent, MASP-1 directly activates prothrombin, FXIII and TAFI. We suggest that MASP-1, in concerted action with other complement and coagulation proteins, may play a role in fibrin clot formation.