2 resultados para 270403 Plant Pathology
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Background: The literature on the applications of homeopathy for controlling plant diseases in both plant pathological models and field trials was first reviewed by Scofield in 1984. No other review on homeopathy in plant pathology has been published since, though much new research has subsequently been carried out using more advanced methods. Objectives: To conduct an up-to-date review of the existing literature on basic research in homeopathy using phytopathological models and experiments in the field. Methods: A literature search was carried out on publications from 1969 to 2009, for papers that reported experiments on homeopathy using phytopathological models (in vitro and in planta) and field trials. The selected papers were summarized and analysed on the basis of a Manuscript Information Score (MIS) to identify those that provided sufficient information for proper interpretation (MIS ≥ 5). These were then evaluated using a Study Methods Evaluation Procedure (SMEP). Results: A total of 44 publications on phytopathological models were identified: 19 papers with statistics, 6 studies with MIS ≥ 5. Publications on field were 9, 6 with MIS ≥ 5. In general, significant and reproducible effects with decimal and centesimal potencies were found, including dilution levels beyond the Avogadro's number. Conclusions: The prospects for homeopathic treatments in agriculture are promising, but much more experimentation is needed, especially at a field level, and on potentisation techniques, effective potency levels and conditions for reproducibility. Phytopathological models may also develop into useful tools to answer pharmaceutical questions.
Resumo:
The role of the salicylic acid (SA) glycosides SA 2-O-β-D-glucose (SAG), SA glucose ester (SGE) and the glycosyl transferases UGT74F1 and UGT74F2 in the establishment of basal resistance of Arabidopsis against Pseudomonas syringae pv tomato DC3000 (Pst) was investigated. Both mutants altered in the corresponding glycosyl transferases (ugt74f1 and ugt74f2) were affected in their basal resistance against Pst. The mutant ugt74f1 showed enhanced susceptibility, while ugt74f2 showed enhanced resistance against the same pathogen. Both mutants have to some extent, altered levels of SAG and SGE compared to wild type plants, however, in response to the infection, ugt74f2 accumulated higher levels of free SA until 24 hpi compared to wild type plants while ugt74f1 accumulated lower SA levels. These SA levels correlated well with reduced expression in PR1 and EDS1 in ugt74f1. In contrast, ugt74f2 has enhanced expression of Enhanced Disease Susceptibility 1 (EDS1) but a strong reduction in the expression of several jasmonate (JA)-dependent genes. Bacterial infection interfered with the expression of Fatty Acid Desaturase (FAD), Lipoxygenase2 (LOX2), carboxyl methyltransferase1 (BSMT1) and 9-cis-epoxycarotenoid dioxygenase (NCED3) genes in ugt74f1, thus promoting an antagonistic effect with SA-signalling and leading to enhanced bacterial growth. UGT74F2 might be a target for bacterial effectors since bacterial mutants affected in effector synthesis were impaired in inducing UGT74F2 expression. These results suggest that UGT74F2 negatively influences the accumulation of free SA, hence leading to an increased susceptibility due to reduced SA levels and increased expression of the JA and ABA markers LOX-2, FAD and NCED-3.