2 resultados para 23H
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Gastro-intestinal nematodes in ruminants, especially Haemonchus contortus, are a global threat to sheep and cattle farming. The emergence of drug resistance, and even multi-drug resistance to the currently available classes of broad spectrum anthelmintics, further stresses the need for new drugs active against gastro-intestinal nematodes. A novel chemical class of synthetic anthelmintics, the Amino-Acetonitrile Derivatives (AADs), was recently discovered and the drug candidate AAD-1566 (monepantel) was chosen for further development. Studies with Caenorhabditis elegans suggested that the AADs act via nicotinic acetylcholine receptors (nAChR) of the nematode-specific DEG-3 subfamily. Here we identify nAChR genes of the DEG-3 subfamily from H. contortus and investigate their role in AAD sensitivity. Using a novel in vitro selection procedure, mutant H. contortus populations of reduced sensitivity to AAD-1566 were obtained. Sequencing of full-length nAChR coding sequences from AAD-susceptible H. contortus and their AAD-1566-mutant progeny revealed 2 genes to be affected. In the gene monepantel-1 (Hco-mptl-1, formerly named Hc-acr-23H), a panel of mutations was observed exclusively in the AAD-mutant nematodes, including deletions at intron-exon boundaries that result in mis-spliced transcripts and premature stop codons. In the gene Hco-des-2H, the same 135 bp insertion in the 5' UTR created additional, out of frame start codons in 2 independent H. contortus AAD-mutants. Furthermore, the AAD mutants exhibited altered expression levels of the DEG-3 subfamily nAChR genes Hco-mptl-1, Hco-des-2H and Hco-deg-3H as quantified by real-time PCR. These results indicate that Hco-MPTL-1 and other nAChR subunits of the DEG-3 subfamily constitute a target for AAD action against H. contortus and that loss-of-function mutations in the corresponding genes may reduce the sensitivity to AADs.
Resumo:
Purpose: Homeopathic preparations are used in homeopathy and anthroposophically extended medicine. Previous studies described differences in UV transmission between homeopathic preparations of CuSO4 and controls. The aim of the present study was to investigate whether statistically significant differences can be found between homeopathic verum and placebo globules by UV spectroscopy. Methods: Verum (aconitum 30c, calcium carbonate/quercus e cortice) and placebo globules used in two previous clinical trials were dissolved in distilled water at 10mg/ml 20-23h prior to the measurements. Absorbance was measured at 190 – 340nm with a Shimadzu UV-1800 double beam spectrophotometer. Duplicates of each sample were measured in a randomized order 4 times on each of the 5 measurement days. To correct for differences between measurement days, average absorbance of all samples on one day was deduced from absorbance of the individual samples. The Kruskal-Wallis test was used to determine group differences between the samples, and finally the coding of the samples was revealed. Results: First analysis showed significant differences (p≤0.05) in average UV absorbance at 200 – 290nm between the samples and a tendency of a correlation (p≤0.1) between absorbance and globule weight. More results will be presented at the conference. Conclusion: Since the absorbance of the samples at the wavelengths between 200 and 290nm was small, a number of aspects had to be considered and should be corrected for if they are present when performing UV spectroscopy on homeopathic globules: 1. Exact weighing of the globules. 2. Measurement error of the spectrophotometer at small absorbances. 3. Drift of the spectrophotometer during a measurement day. 4. Differences between measurement days. The question remains what caused the differences in absorbance found in these experiments: the use of the original material for the production of the verum globules, differences in the production of verum and placebo globules, or other context factors.