88 resultados para 2-PHOTON OPTICAL BISTABILITY
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
PURPOSE Optical coherence tomography (OCT) was used to analyze the thickness of various retinal layers of patients following successful macula-off retinal detachment (RD) repair. METHODS Optical coherence tomography scans of patients after successful macula-off RD repair were reanalyzed with a subsegmentation algorithm to measure various retinal layers. Regression analysis was performed to correlate time after surgery with changes in layer thickness. In addition, patients were divided in two groups. Group 1 had a follow-up period after surgery of up to 7 weeks (range, 21-49 days). In group 2, the follow-up period was >8 weeks (range, 60-438 days). Findings were compared to a group of age-matched healthy controls. RESULTS Correlation analysis showed a significant positive correlation between inner nuclear-outer plexiform layer (INL-OPL) thickness and time after surgery (P=0.0212; r2=0.1551). Similar results were found for the ellipsoid zone-retinal pigment epithelium complex (EZ-RPE) thickness (P=0.005; r2=0.2215). Ganglion cell-inner plexiform layer thickness (GCL-IPL) was negatively correlated with time after surgery (P=0.0064; r2=0.2101). For group comparison, the retinal nerve fiber layer in both groups was thicker compared to controls. The GCL-IPL showed significant thinning in group 2. The outer nuclear layer was significantly thinner in groups 1 and 2 compared to controls. The EZ-RPE complex was significantly thinner in groups 1 and 2 compared to controls. In addition, values in group 1 were significantly thinner than in group 2. CONCLUSIONS Optical coherence tomography retinal layer thickness measurements after successful macular-off RD repair revealed time-dependent thickness changes. Inner nuclear-outer plexiform layer thickness and EZ-RPE thickness was positively correlated with time after surgery. Ganglion cell-inner plexiform layer thickness was negatively correlated with time after surgery.
Resumo:
The protozoan Leishmania mexicana parasite causes chronic non-healing cutaneous lesions in humans and mice with poor parasite control. The mechanisms preventing the development of a protective immune response against this parasite are unclear. Here we provide data demonstrating that parasite sequestration by neutrophils is responsible for disease progression in mice. Within hours of infection L. mexicana induced the local recruitment of neutrophils, which ingested parasites and formed extracellular traps without markedly impairing parasite survival. We further showed that the L. mexicana-induced recruitment of neutrophils impaired the early recruitment of dendritic cells at the site of infection as observed by intravital 2-photon microscopy and flow cytometry analysis. Indeed, infection of neutropenic Genista mice and of mice depleted of neutrophils at the onset of infection demonstrated a prominent role for neutrophils in this process. Furthermore, an increase in monocyte-derived dendritic cells was also observed in draining lymph nodes of neutropenic mice, correlating with subsequent increased frequency of IFNγ-secreting T helper cells, and better parasite control leading ultimately to complete healing of the lesion. Altogether, these findings show that L. mexicana exploits neutrophils to block the induction of a protective immune response and impairs the control of lesion development. Our data thus demonstrate an unanticipated negative role for these innate immune cells in host defense, suggesting that in certain forms of cutaneous leishmaniasis, regulating neutrophil recruitment could be a strategy to promote lesion healing.
Resumo:
For understanding the major- and minor-groove hydration patterns of DNAs and RNAs, it is important to understand the local solvation of individual nucleobases at the molecular level. We have investigated the 2-aminopurine center dot H2O. monohydrate by two-color resonant two-photon ionization and UV/UV hole-burning spectroscopies, which reveal two isomers, denoted A and B. The electronic spectral shift delta nu of the S-1 <- S-0 transition relative to bare 9H-2-aminopurine (9H-2AP) is small for isomer A (-70 cm(-1)), while that of isomer B is much larger (delta nu = 889 cm(-1)). B3LYP geometry optimizations with the TZVP basis set predict four cluster isomers, of which three are doubly H-bonded, with H2O acting as an acceptor to a N-H or -NH2 group and as a donor to either of the pyrimidine N sites. The "sugar-edge" isomer A is calculated to be the most stable form with binding energy D-e = 56.4 kJ/mol. Isomers B and C are H-bonded between the -NH2 group and pyrimidine moieties and are 2.5 and 6.9 kJ/mol less stable, respectively. Time-dependent (TD) B3LYP/TZVP calculations predict the adiabatic energies of the lowest (1)pi pi* states of A and B in excellent agreement with the observed 0(0)(0) bands; also, the relative intensities of the A and B origin bands agree well with the calculated S-0 state relative energies. This allows unequivocal identification of the isomers. The R2PI spectra of 9H-2AP and of isomer A exhibit intense low-frequency out-of-plane overtone and combination bands, which is interpreted as a coupling of the optically excited (1)pi pi* state to the lower-lying (1)n pi* dark state. In contrast, these overtone and combination bands are much weaker for isomer B, implying that the (1)pi pi* state of B is planar and decoupled from the (1)n pi* state. These observations agree with the calculations, which predict the (1)n pi* above the (1)pi pi* state for isomer B but below the (1)pi pi* for both 9H-2AP and isomer A.
Resumo:
Three-dimensional oxalate-based {[Ru(bpy)3][Cu2xNi2(1-x)(ox)3]}n (0≤ x ≤ 1, ox = C2O42-, bpy = 2,2‘bipyridine) were synthesized. The structure was determined for x = 1 by X-ray diffraction on single crystal. The compound crystallizes in the cubic space group P4132. It shows a three-dimensional 10-gon 3-connected (10,3) anionic network where copper(II) has an unusual tris(bischelated) environment. X-ray powder diffraction patterns and their Rietveld refinement show that all the compounds along the series are isostructural and single-phased. According to X-ray absorption spectroscopy, copper(II) and nickel(II) have an octahedral environment, respectively elongated and trigonally distorted. As shown by natural circular dichroism, the optically active forms of {[Ru(bpy)3][CuxNi2(1-x)(ox)3]}n are obtained starting from resolved Δ- or Λ-[Ru(bpy)3]2+. The Curie−Weiss temperatures range between −55 (x = 1) and −150 K (x = 0). The antiferromagnetic exchange interaction thus decreases when the copper contents increases in agreement with the crystallographic structure of the compounds and the electronic structure of the metal ions. At low temperature, the compounds exhibit complex long-range ordered magnetic behavior.
Resumo:
Incomplete endothelialization has been found to be associated with late stent thrombosis, a rare but devastating phenomenon, more frequent after drug-eluting stent implantation. Optical coherence tomography (OCT) has 10 times greater resolution than intravascular ultrasound and thus appears to be a valuable modality for the assessment of stent strut coverage. The LEADERS trial was a multi-centre, randomized comparison of a biolimus-eluting stent (BES) with biodegradable polymer with a sirolimus-eluting stent (SES) using a durable polymer. This study sought to evaluate tissue coverage and apposition of stents using OCT in a group of patients from the randomized LEADERS trial.
Comparison of monte carlo collimator transport methods for photon treatment planning in radiotherapy
Resumo:
The aim of this work was a Monte Carlo (MC) based investigation of the impact of different radiation transport methods in collimators of a linear accelerator on photon beam characteristics, dose distributions, and efficiency. Thereby it is investigated if it is possible to use different simplifications in the radiation transport for some clinical situations in order to save calculation time.
Resumo:
OBJECTIVE To determine the practicability and accuracy of central corneal thickness (CCT) measurements in living chicks utilizing a noncontact, high-speed optical low-coherence reflectometer (OLCR) mounted on a slit lamp. ANIMALS STUDIED Twelve male chicks (Gallus gallus domesticus). Procedures Measurements of CCT were obtained in triplicate in 24 eyes of twelve 1-day-old anaesthetized chicks using OLCR. Every single measurement taken by OLCR consisted of the average result of 20 scans obtained within seconds. Additionally, corneal thickness was determined histologically after immersion fixation in Karnovsky's solution alone (20 eyes) or with a previous injection of the fixative into the anterior chamber before enucleation (4 eyes). RESULTS Central corneal thickness measurements using OLCR in 1-day-old living chicks provide a rapid and feasible examination technique. Mean CCT measured with OLCR (189.7 ± 3.34 μm) was significantly lower than histological measurements (242.1 ± 47.27 μm) in eyes with fixation in Karnovsky's solution (P = 0.0005). In eyes with additional injection of Karnovsky's fixative into the anterior chamber, mean histologically determined CCT was 195.2 ± 8.25 μm vs. 191.9 ± 8.90 μm with OLCR. A trend for a lower variance was found compared to the eyes that had only been immersion fixed. CONCLUSION Optical low-coherence reflectometry is an accurate examination technique to measure in vivo CCT in the eye of newborn chicks. The knowledge of the thickness of the chick cornea and the ability to obtain noninvasive, noncontact measurements of CCT in the living animal may be of interest for research and development of eye diseases in chick models.
Resumo:
Monte Carlo (MC) based dose calculations can compute dose distributions with an accuracy surpassing that of conventional algorithms used in radiotherapy, especially in regions of tissue inhomogeneities and surface discontinuities. The Swiss Monte Carlo Plan (SMCP) is a GUI-based framework for photon MC treatment planning (MCTP) interfaced to the Eclipse treatment planning system (TPS). As for any dose calculation algorithm, also the MCTP needs to be commissioned and validated before using the algorithm for clinical cases. Aim of this study is the investigation of a 6 MV beam for clinical situations within the framework of the SMCP. In this respect, all parts i.e. open fields and all the clinically available beam modifiers have to be configured so that the calculated dose distributions match the corresponding measurements. Dose distributions for the 6 MV beam were simulated in a water phantom using a phase space source above the beam modifiers. The VMC++ code was used for the radiation transport through the beam modifiers (jaws, wedges, block and multileaf collimator (MLC)) as well as for the calculation of the dose distributions within the phantom. The voxel size of the dose distributions was 2mm in all directions. The statistical uncertainty of the calculated dose distributions was below 0.4%. Simulated depth dose curves and dose profiles in terms of [Gy/MU] for static and dynamic fields were compared with the corresponding measurements using dose difference and γ analysis. For the dose difference criterion of ±1% of D(max) and the distance to agreement criterion of ±1 mm, the γ analysis showed an excellent agreement between measurements and simulations for all static open and MLC fields. The tuning of the density and the thickness for all hard wedges lead to an agreement with the corresponding measurements within 1% or 1mm. Similar results have been achieved for the block. For the validation of the tuned hard wedges, a very good agreement between calculated and measured dose distributions was achieved using a 1%/1mm criteria for the γ analysis. The calculated dose distributions of the enhanced dynamic wedges (10°, 15°, 20°, 25°, 30°, 45° and 60°) met the criteria of 1%/1mm when compared with the measurements for all situations considered. For the IMRT fields all compared measured dose values agreed with the calculated dose values within a 2% dose difference or within 1 mm distance. The SMCP has been successfully validated for a static and dynamic 6 MV photon beam, thus resulting in accurate dose calculations suitable for applications in clinical cases.