5 resultados para 1995_03142320 TM-1 4500102
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Two RNA phosphoramidites containing the bases 1,N(6)-ethenoadenine (εA) and 3,N(4)-ethenocytosine (εC) were synthesized. These building blocks were incorporated into two 12-mer oligoribonucleotides for evaluation of the base pairing properties of these base lesions by UV melting curve (Tm) and circular dichroism measurements. The Tm data of the resulting duplexes with the etheno modifications opposing all natural bases showed a substantial destabilization compared to the corresponding natural duplexes, confirming their inability to form base pairs. The coding properties of these lesions were further investigated by introducing them into 31-mer oligonucleotides and assessing their ability to serve as templates in primer extension reactions with HIV, AMV, and MMLV reverse transcriptases (RT). Primer extension reactions showed complete arrest of the incorporation process using MMLV RT and AMV RT, while HIV RT preferentially incorporates dAMP opposite εA and dAMP as well as dTMP opposite εC. The properties of these RNA lesions are discussed in the context of its putative biological role.
Resumo:
The design of upconversion phosphors with higher quantum yield requires a deeper understanding of the detailed energy transfer and upconversion processes between active ions inside the material. Rate equations can model those processes by describing the populations of the energy levels of the ions as a function of time. However, this model presents some drawbacks: energy migration is assumed to be infinitely fast, it does not determine the detailed interaction mechanism (multipolar or exchange), and it only provides the macroscopic averaged parameters of interaction. Hence, a rate equation model with the same parameters cannot correctly predict the time evolution of upconverted emission and power dependence under a wide range of concentrations of active ions. We present a model that combines information about the host material lattice, the concentration of active ions, and a microscopic rate equation system. The extent of energy migration is correctly taken into account because the energy transfer processes are described on the level of the individual ions. This model predicts the decay curves, concentration, and excitation power dependences of the emission. This detailed information can be used to predict the optimal concentration that results in the maximum upconverted emission.