30 resultados para 1995_01240835 TM-48 4302107
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Phosphatidylethanol (PEth) is an abnormal phospholipid carrying two fatty acid chains. It is only formed in the presence of ethanol via the action of phospholipase D (PLD). Its use as a biomarker for alcohol consumption is currently under investigation. Previous methods for the analysis of PEth included high-performance liquid chromatography (HPLC) coupled to an evaporative light scattering detector (ELSD), which is unspecific for the different homologues--improved methods are now based on time of flight mass spectrometry (TOF-MS) and tandem mass spectrometry (MS/MS). The intention of this work was to identify as many homologues of PEth as possible. A screening procedure using multiple-reaction monitoring (MRM) for the identified homologues has subsequently been established. For our investigations, autopsy blood samples collected from heavy drinkers were used. Phosphatidylpropanol 16:0/18:1 (internal standard) was added to the blood samples prior to liquid-liquid extraction using borate buffer (pH 9), 2-propanol and n-hexane. After evaporation, the samples were redissolved in the mobile phase and injected into the LC-MS/MS system. Compounds were separated on a Luna Phenyl Hexyl column (50 mm x 2 mm, 3 microm) by gradient elution, using 2 mM ammonium acetate and methanol/acetone (95/5; v/v). A total of 48 homologues of PEth could be identified by using precursor ion and enhanced product ion scans (EPI).
Resumo:
Objectives To determine the diagnostic accuracy of World Health Organization (WHO) 2010 and 2006 as well as United States Department of Health and Human Services (DHHS) 2008 definitions of immunological failure for identifying virological failure (VF) in children on antiretroviral therapy (ART). Methods Analysis of data from children (<16 years at ART initiation) at South African ART sites at which CD4 count/per cent and HIV-RNA monitoring are performed 6-monthly. Incomplete virological suppression (IVS) was defined as failure to achieve ≥1 HIV-RNA ≤400 copies/ml between 6 and 15 months on ART and viral rebound (VR) as confirmed HIV-RNA ≥5000 copies/ml in a child on ART for ≥18 months who had achieved suppression during the first year on treatment. Results Among 3115 children [median (interquartile range) age 48 (20-84) months at ART initiation] on treatment for ≥1 year, sensitivity of immunological criteria for IVS was 10%, 6% and 26% for WHO 2006, WHO 2010 and DHHS 2008 criteria, respectively. The corresponding positive predictive values (PPV) were 31%, 20% and 20%. Diagnostic accuracy for VR was determined in 2513 children with ≥18 months of follow-up and virological suppression during the first year on ART with sensitivity of 5% (WHO 2006/2010) and 27% (DHHS 2008). PPV results were 42% (WHO 2010), 43% (WHO 2006) and 20% (DHHS 2008). Conclusion Current immunological criteria are unable to correctly identify children failing ART virologically. Improved access to viral load testing is needed to reliably identify VF in children.
Resumo:
Hypoglycemia is a characteristic condition of early lactation dairy cows and is subsequently dependent on, and may affect, metabolism in the liver. The objective of the present study was to investigate the effects of induced hypoglycemia, maintained for 48 h, on metabolic parameters in plasma and liver of mid-lactation dairy cows. The experiment involved 3 treatments, including a hyperinsulinemic hypoglycemic clamp (HypoG, n=6) to obtain a glucose concentration of 2.5 mmol/L, a hyperinsulinemic euglycemic clamp (EuG, n=6) in which the effect of insulin was studied, and a control treatment with a 0.9% saline solution (NaCl, n=6). Blood samples for measurements of insulin, metabolites, and enzymes were taken at least once per hour. Milk yield was recorded and milk samples were collected before and after treatment. Liver biopsies were obtained before and after treatment to measure mRNA abundance by real-time, quantitative reverse transcription-PCR of 12 candidate genes involved in the main metabolic pathways. Milk yield decreased in HypoG and NaCl cows, whereas it remained unaffected in EuG cows. Energy-corrected milk yield (kg/d) was only decreased in HypoG cows. In plasma, concentration of beta-hydroxybutyrate decreased in response to treatment in EuG cows and was lower (0.41+/-0.04 mmol/L) on d 2 of the treatment compared with that in HypoG and NaCl cows (on average 0.61+/-0.03 mmol/L, respectively). Nonesterified fatty acids remained unaffected in all treatments. In the liver, differences between treatments for their effects were only observed in case of mitochondrial phosphoenolpyruvate carboxykinase (PEPCKm) and glucose-6-phosphatase (G6PC). In HypoG, mRNA abundance of PEPCKm was upregulated, whereas in EuG and NaCl cows, it was downregulated. The EuG treatment downregulated mRNA expression of G6PC, a marked effect compared with the unchanged transcript expression in NaCl. The mRNA abundance of the insulin receptor remained unaffected in all treatments, and no significant treatment differences were observed for genes related to lipid metabolism. In conclusion, low glucose concentrations in dairy cows affect liver metabolism at a molecular level through upregulation of PEPCKm mRNA abundance. Metabolic regulatory events in the liver are directed, apart from hormones, by the level of metabolites, either in excess (e.g., free fatty acids) or in shortage (e.g., glucose).
Resumo:
BACKGROUND: The steadily increasing demands for single-donor apheresis platelet (PLT) concentrates (APCs) are a challenge to the PLT supply system. Therefore, efforts to improve plateletpheresis yield, allowing apheresis products to be split into 2 or more units, are valuable strategies. No data to demonstrate in vivo transfusion efficacy of these high-yield split-APCs are currently available, however. STUDY DESIGN AND METHODS: The transfusion efficacy of APCs produced by two apheresis methods involving different harvest and storing procedures and varying PLT yields was investigated. Efficacy measures were the 1-hour percent PLT recovery (PPR(1h)) and the 1-hour corrected count increment (CCI(1h)). In total, 400 APCs, produced with either an Amicus device (Baxter) and stored in PLT additive solution (T-Sol; Amicus method [AM], n = 107) or a Trima device (Gambro) and stored in plasma (Trima method [TM], n = 293), were transfused to 55 children (31 girls; median age, 9.5 years; range, 0.2-18.5 years) with thrombocytopenia due to chemotherapy or aplastic anemia (median, 4 APCs per child; range, 1-68). RESULTS: Transfusion efficacy was significantly lower for AM-APCs than for TM-APCs (median PPR(1h), 17 and 33%; median CCI(1h), 7.9 and 15.6, respectively; p < 0.001). Reduced transfusion efficacy correlated in a yield-dependent manner with high apheresis PLT yields (>/=6 x 10(11)) for AM-APCs (p < 0.001). CONCLUSION: Although in vitro validation of AM- and TM-APCs has been performed, only by evaluating transfusion efficacy in vivo did the AM turn out to be not suitable for high-yield thrombocytapheresis. This study recommends the implementation of in vivo transfusion efficacy studies for high-yield APC apheresis donations.
Resumo:
We review the case of a 48-year-old woman who underwent elective percutaneous patent foramen ovale closure following successive renal and myocardial infarction with normal renal and coronary arteries, probably as a consequence of paradoxical emboli.
Resumo:
The exponential increase in cardioverter-defibrillator implantations has resulted in a need for safe implantations that do not require long waiting periods. We report intraoperative and follow-up results in 48 patients with ventricular tachyarrhythmias who underwent cardioverter-defibrillator implantation in the catheterization laboratory. Twenty-six (54%) patients had their first cardioverter-defibrillator implant (group 1), and 22 (46%) patients underwent pulse-generator replacement (group 2). In all patients, cardioverter-defibrillator implant or pulse-generator replacement was performed with the patient under general anesthesia. In 25 (96%) of 26 patients in group 1, cardioverter-defibrillator implantation was possible with a mean defibrillation threshold of 13 +/- 8 J. One patient had a defibrillation threshold of > 25 J, and therefore cardioverter-defibrillator implant was not achieved. This patient underwent epicardial device implantation 1 day later. Another patient in group 1 had vessel rupture (vena subclavia) intraoperatively. During a mean follow-up of 2 +/- 1 months, two patients died from congestive heart failure 2 and 4 months after device implantation. An infection occurred in one patient in group 2, 3 months after generator replacement. In conclusion, these data show that in the majority of patients cardioverter-defibrillator implantation in the catheterization laboratory is safe and has a low complication rate and therefore can generally be recommended.