3 resultados para 180-kda Receptor

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Monoclonal antibodies (mabs) were generated against whole sonicated Neospora caninum tachyzoites as immunogen. Initial ELISA screening of the reactivity of hybridoma culture supernatants using the same antigen and antigen treated with sodium periodate prior to antibody binding resulted in the identification of 8 supernatants with reactivity against putative carbohydrate epitopes. Following immunoblotting, mab6D12 (IgG1), binding a 52/48-kDa doublet, and mab6C6 (IgM), binding a 190/180-kDa doublet, were selected for further studies. Immunofluorescence of tachyzoite-infected cultures localized the corresponding epitopes not to the surface, but to interior epitopes at the apical part of N. caninum tachyzoites. During in vitro tachyzoite to bradyzoite stage conversion, mab6C6 labeling translocated toward the cyst periphery, while for mab6D12 no changes in localization were noted. Upon extraction of tachyzoites with the nonionic detergent Triton-X-100, the 52-kDa band recognized by mab6D12 was present exclusively in the insoluble, cytoskeletal fraction of both N. caninum and Toxoplasma gondii tachyzoites. Tandem mass spectrometry analysis identified this protein as N. caninum beta tubulin. The 48-kDa band labeled by mab6D12 was a Vero cell protein contamination. The protein(s) reacting with mab6C6 could not be conclusively identified by mass spectrometry. Immunofluorescence consistently failed to label T. gondii tachyzoites, indicating that beta tubulin in T. gondii and N. caninum could be differentially modified or that the reactive epitope in T. gondii is masked. Immunogold TEM of isolated apical cytoskeletal preparations and dual immunofluorescence with antibody to tubulin confirmed that mab6D12 binds to the anterior part of apical complex-associated microtubules. The sodium periodate sensitivity of the beta tubulin associated epitope was confirmed by immunoblotting and ELISA, and treatment of N. caninum cytoskeletal proteins with sialidase prior to mab6D12 labeling resulted in a profound loss of antibody binding, suggesting that mab6D12 reacts with sialylated beta tubulin.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The human GH gene is 1.7 kilobase pairs (kb) in length and is composed of five exons and four introns. This gene is expressed in the pituitary gland and encodes a 22 kDa protein. In addition to this predominant (75%) form, 5-10% of pituitary GH is present as a 20 kDa protein that has an amino acid (aa) sequence identical to the 22 kDa form except for a 15 aa internal deletion of residues 32-46 as a result of an alternative splicing event. Because it has been reported that non-22-kDa GH isoforms might be partly responsible for short stature and growth retardation in children, the aim of this study was to compare the impact of both 22 kDa and 20 kDa GH on GH receptor gene (GH receptor/GH binding protein (GHR/GHBP)) expression. Various concentrations of 20 kDa and 22 kDa GH (0, 2, 5, 12.5, 25, 50 and 150 ng/ml) were added to human hepatoma (HuH7) cells cultured in serum-free hormonally defined medium for 0, 1 and 2 h. Thereafter GHR/GHBP mRNA expression was measured by quantitative PCR. Addition of either 20 kDa or 22 kDa GH, at low or normal physiological concentrations (0, 2, 5, 12.5, 25 or 50 ng/ml) induced a dose-dependent increase in GHR/GHBP expression. However, a supraphysiological concentration of 20 kDa GH (150 ng/ml) resulted in a significantly lower (P<0.05) downregulation of GHR/GHBP gene transcription compared with the downregulation achieved by this concentration of 22 kDa GH. This difference might be explained by a decreased ability to form a 1 : 1 complex with GHR and/or GHBP, which normally occurs at high concentrations of GH. Nuclear run-on experiments and GHBP determinations confirmed the changes in GHR/GHBP mRNA levels. In conclusion, we report that both 20 kDa and 22 kDa GH, in low and normal physiological concentrations, have the same effect on regulation of GHR/GHBP gene transcription in a human hepatoma cell line. At a supraphysiological concentration of 150 ng/ml, however, 20 kDa GH has a less self-inhibitory effect than the 22 kDa form.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Convulxin, a powerful platelet activator, was isolated from Crotalus durissus terrificus venom, and 20 amino acid N-terminal sequences of both subunits were determined. These indicated that convulxin belongs to the heterodimeric C-type lectin family. Neither antibodies against GPIb nor echicetin had any effect on convulxin-induced platelet aggregation showing that, in contrast to other venom C-type lectins acting on platelets, GPIb is not involved in convulxin-induced platelet activation. In addition, partially reduced/denatured convulxin only affects collagen-induced platelet aggregation. The mechanism of convulxin-induced platelet activation was examined by platelet aggregation, detection of time-dependent tyrosine phosphorylation of platelet proteins, and binding studies with 125I-convulxin. Convulxin induces signal transduction in part like collagen, involving the time-dependent tyrosine phosphorylation of Fc receptor gamma chain, phospholipase Cgamma2, p72(SYK), c-Cbl, and p36-38. However, unlike collagen, pp125(FAK) and some other bands are not tyrosine-phosphorylated. Convulxin binds to a glycosylated 62-kDa membrane component in platelet lysate and to p62/GPVI immunoprecipitated by human anti-p62/GPVI antibodies. Convulxin subunits inhibit both aggregation and tyrosine phosphorylation in response to collagen. Piceatannol, a tyrosine kinase inhibitor with some specificity for p72(SYK), showed differential effects on collagen and convulxin-stimulated signaling. These results suggest that convulxin uses the p62/GPVI but not the alpha2beta1 part of the collagen signaling pathways to activate platelets. Occupation and clustering of p62/GPVI may activate Src family kinases phosphorylating Fc receptor gamma chain and, by a mechanism previously described in T- and B-cells, activate p72(SYK) that is critical for downstream activation of platelets.