4 resultados para 169-1038
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
We analyzed the incidence, presenting features, risk factors of extramedullary (EM) relapse occurring in acute promyelocytic leukemia (APL) treated with all-trans retinoic acid (ATRA) and chemotherapy by using a competing-risk method. In total, 740/ 806 (92%) patients included in three multicenter trials (APL91, APL93 trials and PETHEMA 96) achieved CR, of whom 169 (23%) relapsed, including 10 EM relapses. Nine relapses involved the central nervous system (CNS) and one the skin, of which two were isolated EM relapse. In patients with EM disease, median WBC count was 26950/mm3 (7700-162000). The 3-year cumulative incidence of EM disease at first relapse was 5.0%. Univariate analysis identified age <45 years (P=0.05), bcr3 PML-RARalpha isoform (P= 0.0003) and high WBC counts (> or = 10,000/ mm3) (P<0.0001) as risk factors for EM relapse. In multivariate analysis, only high WBC count remained significant (P= 0.001). Patients with EM relapse had a poorer outcome since median survival from EM relapse was 6.7 months as compared to 26.3 months for isolated BM relapse (P=0.04). In conclusion, EM relapse in APL occurs more frequently in patients with increased WBC counts (> or = 10,000/mm3) and carries a poor prognosis. Whether CNS prophylaxis should be systematically performed in patients with WBC > or = 10,000/mm3 at diagnosis remains to be established.
Resumo:
To assess the association of CYP2B6 allelic diversity with efavirenz (EFV) pharmacokinetics, we performed extensive genotyping of 15 relevant single nucleotide polymorphism in 169 study participants, and full resequencing of CYP2B6 in individuals with abnormal EFV plasma levels. Seventy-seven (45.5%) individuals carried a known (CYP2B6*6, *11, *15, or *18) or new loss/diminished-function alleles. Resequencing defined two new loss-of-function alleles: allele *27 (marked by 593T>C [M198T]), that results in 85% decrease in enzyme activity and allele *28 (marked by 1132C>T), that results in protein truncation at arginine 378. Median AUC levels were 188.5 microg h/ml for individuals homozygous for a loss/diminished-function allele, 58.6 microg h/ml for carriers, and 43.7 microg h/ml for noncarriers (P<0.0001). Individuals with a poor metabolizer genotype had a likelihood ratio of 35 (95% CI, 11-110) of presenting very high EFV plasma levels. CYP2B6 poor metabolizer genotypes explain to a large extent EFV pharmacokinetics and identify individuals at risk of extremely elevated EFV plasma levels.
Resumo:
Autophagy has been demonstrated to have an essential function in several cellular hematopoietic differentiation processes, for example, the differentiation of reticulocytes. To investigate the role of autophagy in neutrophil granulopoiesis, we studied neutrophils lacking autophagy-related (Atg) 5, a gene encoding a protein essential for autophagosome formation. Using Cre-recombinase mediated gene deletion, Atg5-deficient neutrophils showed no evidence of abnormalities in morphology, granule protein content, apoptosis regulation, migration, or effector functions. In such mice, however, we observed an increased proliferation rate in the neutrophil precursor cells of the bone marrow as well as an accelerated process of neutrophil differentiation, resulting in an accumulation of mature neutrophils in the bone marrow, blood, spleen, and lymph nodes. To directly study the role of autophagy in neutrophils, we employed an in vitro model of differentiating neutrophils that allowed modulating the levels of ATG5 expression, or, alternatively, intervening pharmacologically with autophagy-regulating drugs. We could show that autophagic activity correlated inversely with the rate of neutrophil differentiation. Moreover, pharmacological inhibition of p38 MAPK or mTORC1 induced autophagy in neutrophilic precursor cells and blocked their differentiation, suggesting that autophagy is negatively controlled by the p38 MAPK-mTORC1 signaling pathway. On the other hand, we obtained no evidence for an involvement of the PI3K-AKT or ERK1/2 signaling pathways in the regulation of neutrophil differentiation. Taken together, these findings show that, in contrast to erythropoiesis, autophagy is not essential for neutrophil granulopoiesis, having instead a negative impact on the generation of neutrophils. Thus, autophagy and differentiation exhibit a reciprocal regulation by the p38-mTORC1 axis.