64 resultados para 1669

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Relevância:

10.00% 10.00%

Publicador:

Resumo:

To use T2 and T2* mapping in patients after matrix-associated autologous chondrocyte transplantation (MACT) of the knee, and to compare and correlate both methodologies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Narcolepsy is characterized by excessive daytime sleepiness and rapid eye movement (REM) sleep abnormalities, including cataplexy. The aim of this study was to assess REM sleep pressure and homeostasis in narcolepsy. Six patients with narcolepsy and six healthy controls underwent a REM sleep deprivation protocol, including one habituation, one baseline, two deprivation nights (D1, D2) and one recovery night. Multiple sleep latency tests (MSLTs) were performed during the day after baseline and after D2. During D1 and D2 REM sleep was prevented by awakening the subjects at the first polysomnographic signs of REM sleep for 2 min. Mean sleep latency and number of sleep-onset REM periods (SOREMs) were determined on all MSLT. More interventions were required to prevent REM sleep in narcoleptics compared with control subjects during D1 (57 ± 16 versus 24 ± 10) and D2 (87 ± 22 versus 35 ± 8, P = 0.004). Interventions increased from D1 to D2 by 46% in controls and by 53% in narcoleptics (P < 0.03). Selective REM sleep deprivation was successful in both controls (mean reduction of REM to 6% of baseline) and narcoleptics (11%). Both groups had a reduction of total sleep time during the deprivation nights (P = 0.03). Neither group had REM sleep rebound in the recovery night. Narcoleptics had, however, an increase in the number of SOREMs on MSLT (P = 0.005). There was no increase in the number of cataplexies after selective REM sleep deprivation. We conclude that: (i) REM sleep pressure is higher in narcoleptics; (ii) REM sleep homeostasis is similar in narcoleptics and controls; (iii) in narcoleptics selective REM sleep deprivation may have an effect on sleep propensity but not on cataplexy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Delayed cerebral vasospasm after aneurysmal subarachnoid hemorrhage (SAH) is a major cause of high morbidity and mortality. The reduced availability of nitric oxide (NO) in blood and cerebrospinal fluid (CSF) is well established as a key mechanism of vasospasm. Systemic administration of glyceryl trinitrate (GTN), an NO donor also known as nitroglycerin, has failed to be established in clinical settings to prevent vasospasm because of its adverse effects, particularly hypotension. The purpose of this study was to analyze the effect of intrathecally administered GTN on vasospasm after experimental SAH in the rabbit basilar artery.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The highly cytotoxic diruthenium complex [(p-MeC(6)H(4)Pr(1))(2)Ru(2)(SC(6)H(4)-p-Me)(3)](+) (1), water-soluble as the chloride salt, is shown to efficiently catalyze oxidation of the thiols cysteine and glutathione to give the corresponding disulfides, which may explain its high in vitro anticancer activity.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The synthesis and the photophysical properties of the complex [Ru(TTF-dppz)(2)(Aqphen)](2+) (TTF = tetrathiafulvalene, dppz = dipyrido-[3,2-a:2',3'-c]phenazine, Aqphen = anthraquinone fused to phenanthroline via a pyrazine bridge) are described. In this molecular triad excitation into the metal ligand charge transfer bands results in the creation of a long-lived charge separated state with TTF acting as electron donor and anthraquinone as terminal acceptor. The lifetime of the charge-separated state is 400 ns in dichloromethane at room temperature. A mechanism for the charge separation involving an intermediate charge-separated state is proposed based on transient absorption spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Fundamental biological processes such as cell-cell communication, signal transduction, molecular transport and energy conversion are performed by membrane proteins. These important proteins are studied best in their native environment, the lipid bilayer. The atomic force microscope (AFM) is the instrument of choice to determine the native surface structure, supramolecular organization, conformational changes and dynamics of membrane-embedded proteins under near-physiological conditions. In addition, membrane proteins are imaged at subnanometer resolution and at the single molecule level with the AFM. This review highlights the major advances and results achieved on reconstituted membrane proteins and native membranes as well as the recent developments of the AFM for imaging.