59 resultados para 12S rRNA gene
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Here we determined the analytical sensitivities of broad-range real-time PCR-based assays employing one of three different genomic DNA extraction protocols in combination with one of three different primer pairs targeting the 16S rRNA gene to detect a panel of 22 bacterial species. DNA extraction protocol III, using lysozyme, lysostaphin, and proteinase K, followed by PCR with the primer pair Bak11W/Bak2, giving amplicons of 796 bp in length, showed the best overall sensitivity, detecting DNA of 82% of the strains investigated at concentrations of < or =10(2) CFU in water per reaction. DNA extraction protocols I and II, using less enzyme treatment, combined with other primer pairs giving shorter amplicons of 466 bp and 342 or 346 bp, respectively, were slightly more sensitive for the detection of gram-negative but less sensitive for the detection of gram-positive bacteria. The obstacle of detecting background DNA in blood samples spiked with bacteria was circumvented by introducing a broad-range hybridization probe, and this preserved the minimal detection limits observed in samples devoid of blood. Finally, sequencing of the amplicons generated using the primer pair Bak11W/Bak2 allowed species identification of the detected bacterial DNA. Thus, broad-spectrum PCR targeting the 16S rRNA gene in the quantitative real-time format can achieve an analytical sensitivity of 1 to 10 CFU per reaction in water, avoid detection of background DNA with the introduction of a broad-range probe, and generate amplicons that allow species identification of the detected bacterial DNA by sequencing. These prerequisites are important for its application to blood-containing patient samples.
Resumo:
Ninety strains of a collection of well-identified clinical isolates of gram-negative nonfermentative rods collected over a period of 5 years were evaluated using the new colorimetric VITEK 2 card. The VITEK 2 colorimetric system identified 53 (59%) of the isolates to the species level and 9 (10%) to the genus level; 28 (31%) isolates were misidentified. An algorithm combining the colorimetric VITEK 2 card and 16S rRNA gene sequencing for adequate identification of gram-negative nonfermentative rods was developed. According to this algorithm, any identification by the colorimetric VITEK 2 card other than Achromobacter xylosoxidans, Acinetobacter sp., Burkholderia cepacia complex, Pseudomonas aeruginosa, and Stenotrophomonas maltophilia should be subjected to 16S rRNA gene sequencing when accurate identification of nonfermentative rods is of concern.
Resumo:
Phylogenies of housekeeping gene and 16S rRNA gene sequences were compared to improve the classification of the bacterial family Pasteurellaceae and knowledge of the evolutionary relationships of its members. Deduced partial protein sequences of the housekeeping genes atpD, infB and rpoB were compared in 28, 36 and 28 representative taxa of the Pasteurellaceae, respectively. The monophyly of representatives of the genus Gallibacterium was recognized by analysis of all housekeeping genes, while members of Mannheimia, Actinobacillus sensu stricto and the core group of Pasteurella sensu stricto formed monophyletic groups with two out of three housekeeping genes. Representatives of Mannheimia, Actinobacillus sensu stricto, [Haemophilus] ducreyi and [Pasteurella] trehalosi formed a monophyletic unit by analysis of all three housekeeping genes, which was in contrast to the 16S rRNA gene-derived phylogeny, where these taxa occurred at separate positions in the phylogenetic tree. Representatives of the Rodent, Avian and Aphrophilus-Haemophilus 16S rRNA gene groups were weakly supported by phylogenetic analysis of housekeeping genes. Phylogenies derived by comparison of the housekeeping genes diverged significantly from the 16S rRNA gene-derived phylogeny as evaluated by the likelihood ratio test. A low degree of congruence was also observed between the individual housekeeping gene-derived phylogenies. Estimates on speciation derived from 16S rRNA and housekeeping gene sequence comparisons resulted in quite different evolutionary scenarios for members of the Pasteurellaceae. The phylogeny based on the housekeeping genes supported observed host associations between Mannheimia, Actinobacillus sensu stricto and [Pasteurella] trehalosi and animals with paired hooves.
Resumo:
We evaluated three molecular methods for identification of Francisella strains: pulsed-field gel electrophoresis (PFGE), amplified fragment length polymorphism (AFLP) analysis, and 16S rRNA gene sequencing. The analysis was performed with 54 Francisella tularensis subsp. holarctica, 5 F. tularensis subsp. tularensis, 2 F. tularensis subsp. novicida, and 1 F. philomiragia strains. On the basis of the combination of results obtained by PFGE with the restriction enzymes XhoI and BamHI, PFGE revealed seven pulsotypes, which allowed us to discriminate the strains to the subspecies level and which even allowed us to discriminate among some isolates of F. tularensis subsp. holarctica. The AFLP analysis technique produced some degree of discrimination among F. tularensis subsp. holarctica strains (one primary cluster with three major subclusters and minor variations within subclusters) when EcoRI-C and MseI-A, EcoRI-T and MseI-T, EcoRI-A and MseI-C, and EcoRI-0 and MseI-CA were used as primers. The degree of similarity among the strains was about 94%. The percent similarities of the AFLP profiles of this subspecies compared to those of F. tularensis subsp. tularensis, F. tularensis subsp. novicida, and F. philomiragia were less than 90%, about 72%, and less than 24%, respectively, thus permitting easy differentiation of this subspecies. 16S rRNA gene sequencing revealed 100% similarity for all F. tularensis subsp. holarctica isolates compared in this study. These results suggest that although limited genetic heterogeneity among F. tularensis subsp. holarctica isolates was observed, PFGE and AFLP analysis appear to be promising tools for the diagnosis of infections caused by different subspecies of F. tularensis and suitable techniques for the differentiation of individual strains.
Resumo:
Pasteurella multocida is commonly found in the oral cavity of cats and dogs. In humans it is known as an opportunistic pathogen after bites from these animals. Phenotypic identification of P. multocida based on biochemical reactions is often limited and usually only done on a species level, even though 3 subspecies are described. For molecular taxonomy and diagnostic purposes a phylogenetic analysis of the three subspecies of P. multocida based on their 16S rRNA (rrs) gene sequence was therefore carried out. We found P. multocida subsp. septica on a distinguished branch on the phylogenetic tree of Pasteurellaceae, due to a 1.5% divergence of its rrs gene compared to the two other, more closely related subspecies multocida and gallicida. This phylogenetic divergence can be used for the identification of P. multocida subsp. septica by rrs gene determination since they form a phylogenetically well isolated and defined group as shown with a set of feline isolates. Comparison to routine phenotypic identification shows the advantage of the sequence-based identification over conventional methods. It is therefore helpful for future unambiguous identification and molecular taxonomy of P. multocida as well as for epidemiological investigations.
Resumo:
Riemerella anatipestifer, the causative agent of septicemia anserum exsudativa (also called new duckling disease), belongs to the family Flavobacteriaceae of gram-negative bacteria. We determined the DNA sequences of the rrs genes encoding the 16S rRNAs of four R. anatipestifer strains by directly sequencing PCR-amplified rrs genes. A sequence similarity analysis confirmed the phylogenetic position of R. anatipestifer in the family Flavobacteriaceae in rRNA superfamily V and allowed fine mapping of R. anatipestifer on a separate rRNA branch comprising the most closely related species, Bergeyella zoohelcum, as well as Chryseobacterium balustinum, Chryseobacterium indologenes, and Chryseobacterium gleum. The sequences of the rrs genes of the four R. anatipestifer strains varied between 0.5 and 1.0%, but all of the strains occupied the same position on the phylogenetic tree. In general, differences in rrs genes were observed among R. anatipestifer strains, even within a given serotype, as shown by restriction fragment length polymorphism of PCR-amplified rrs genes.
Resumo:
The sequences of the 16S rRNA genes (rrs genes) of Clostridium chauvoei, the causative agent of blackleg in cattle, and the phenotypically related organism Clostridium septicum were determined. After amplification of 1,507-bp PCR fragments from the corresponding rrs genes, the sequences were determined in a single round of sequencing by using conserved region primers. A sequence similarity analysis of the sequences revealed the close phylogenetic relationship of C. chauvoei and C. septicum in Clostridium cluster I (M. D. Collins, P. A. Lawson, A. Willems, J. J. Cordoba, J. Fernandez-Garayzabal, P. Garcia, J. Cai, H. Hippe, and J. A. E. Farrow, Int. J. Syst. Bacteriol. 44:812-826, 1994), which includes Clostridium carnis, Clostridium perfringens, Clostridium botulinum, and Clostridium tetani. We found that 99.3% of the nucleotides in the genes of C. chauvoei and C. septicum are identical.
Resumo:
Genetic relationships among bacterial strains belonging to the genus Aeromonas were inferred from 16S rRNA, gyrB and rpoB gene sequences. Twenty-eight type or collection strains of the recognized species or subspecies and 33 Aeromonas strains isolated from human and animal specimens as well as from environmental samples were included in the study. As reported previously, the 16S rRNA gene sequence is highly conserved within the genus Aeromonas, having only limited resolution for this very tight group of species. Analysis of a 1.1 kb gyrB sequence confirmed that this gene has high resolving power, with maximal interspecies divergence of 15.2 %. Similar results were obtained by sequencing only 517 bp of the rpoB gene, which showed maximal interspecies divergence of 13 %. The topologies of the gyrB- and rpoB-derived trees were similar. The results confirm the close relationship of species within the genus Aeromonas and show that a phylogenetic approach including several genes is suitable for improving the complicated taxonomy of the genus.
Resumo:
A novel non-culture based 16S rRNA Terminal Restriction Fragment Length Polymorphism (T-RFLP) method using the restriction enzymes Tsp509I and Hpy166II was developed for the characterization of the nasopharyngeal microbiota and validated using recently published 454 pyrosequencing data. 16S rRNA gene T-RFLP for 153 clinical nasopharyngeal samples from infants with acute otitis media (AOM) revealed 5 Tsp509I and 6 Hpy166II terminal fragments (TFs) with a prevalence of >10%. Cloning and sequencing identified all TFs with a prevalence >6% allowing a sufficient description of bacterial community changes for the most important bacterial taxa. The conjugated 7-valent pneumococcal polysaccharide vaccine (PCV-7) and prior antibiotic exposure had significant effects on the bacterial composition in an additive main effects and multiplicative interaction model (AMMI) in concordance with the 16S rRNA 454 pyrosequencing data. In addition, the presented T-RFLP method is able to discriminate S. pneumoniae from other members of the Mitis group of streptococci, which therefore allows the identification of one of the most important human respiratory tract pathogens. This is usually not achieved by current high throughput sequencing protocols. In conclusion, the presented 16S rRNA gene T-RFLP method is a highly robust, easy to handle and a cheap alternative to the computationally demanding next-generation sequencing analysis. In case a lot of nasopharyngeal samples have to be characterized, it is suggested to first perform 16S rRNA T-RFLP and only use next generation sequencing if the T-RFLP nasopharyngeal patterns differ or show unknown TFs.
Resumo:
We report a case of tularemia in a common marmoset (Callithrix jacchus) diagnosed by determination of the isolate's 16S ribosomal RNA (rRNA) gene sequence. Pathological examination of the animal revealed a multifocal acute necrotizing hepatitis, interstitial nephritis, splenitis, and lymphangitis of the mandibular, retropharyngeal, and cervical and mesenteric lymph nodes. Moreover, multiple foci of acute necrosis were found in the epithelium of the jejunum and the interstitium of the lung. Bacteriological investigations revealed a septicemia. The isolated infectious agent was uncommon, not routinely diagnosed in our laboratory and therefore difficult to identify by conventional tools in a reasonable time and effort. thus, we decided to perform a genetic analysis based on the 16S rRNA gene sequence. Thereby, an infection with Francisella tularensis, the causative agent of tularemia, was unambiguously diagnosed. This shows the great advantage 16S rRNA gene sequencing has as a general identification approach for unusual or rare isolates.
Resumo:
Background Actinobaculum schaalii was first described as a causative agent for human infection in 1997. Since then it has mainly been reported causing urinary tract infections (UTI) in elderly individuals with underlying urological diseases. Isolation and identification is challenging and often needs molecular techniques. A. schaalii is increasingly reported as a cause of infection in humans, however data in children is very limited. Case presentation We present the case of an 8-month-old Caucasian boy suffering from myelomeningocele and neurogenic bladder who presented with a UTI. An ultrasound of the urinary tract was unremarkable. Urinalysis and microscopy showed an elevated leukocyte esterase test, pyuria and a high number of bacteria. Empiric treatment with oral co-trimoxazole was started. Growth of small colonies of Gram-positive rods was observed after 48 h. Sequencing of the 16S rRNA gene confirmed an A. schaalii infection 9 days later. Treatment was changed to oral amoxicillin for 14 days. On follow-up urinalysis was normal and urine cultures were negative. Conclusions A.schaalii is an emerging pathogen in adults and children. Colonization and subsequent infection seem to be influenced by the age of the patient. In young children with high suspicion of UTI who use diapers or in children who have known abnormalities of their urogenital tract, infection with A. schaalii should be considered and empiric antimicrobial therapy chosen accordingly.
Resumo:
To allow classification of bacteria previously reported as the SP group and the Stewart-Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial rpoB sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %-100 % similarity between isolates. A blast search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart-Letscher group showed the highest 16S rRNA gene similarity (94.9-95.5 %) to members of the SP group. recN gene sequence analysis of 11 representative strains resulted in similarities of 97-100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart-Letscher group strain. Sequence similarity values based on the recN gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart-Letscher group strain was associated with the SP group. A new genus, Necropsobacter gen. nov., with only one species, Necropsobacter rosorum sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family Pasteurellaceae by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)-L-arabinose, (+)-D-xylose, dulcitol, (+)-D-galactose, (+)-D-mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76(T), and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76(T) are C(14 : 0), C(16 : 0), C(16:1)omega7c and summed feature C(14 : 0) 3-OH/iso-C(16 : 1) I. This fatty acid profile is typical for members of the family Pasteurellaceae. The G+C content of DNA of strain Michel A/76(T) was estimated to be 52.5 mol% in a previous investigation. The type strain is P709(T) ( = Michel A/76(T) = CCUG 28028(T) = CIP 110147(T) = CCM 7802(T)).
Resumo:
Phenotypic and phylogenetic studies were performed on eight Gram-negative-staining, rod-shaped bacteria isolated from seals. Biochemical and physiological studies showed identical profiles for all of the isolates and indicated that they were related to the family Pasteurellaceae. 16S rRNA gene sequencing demonstrated that the organism represented a distinct cluster with two sublines within the family Pasteurellaceae with <96% sequence similarity to any recognized species. Multilocus sequence analysis (MLSA) including rpoB, infB and recN genes further confirmed these findings with the eight isolates forming a genus-like cluster with two branches. Genome relatedness as deduced from recN gene sequences suggested that the isolates represented a new genus with two species. On the basis of the results of the phylogenetic analysis and phenotypic criteria, it is proposed that these bacteria from seals are classified as Bisgaardia hudsonensis gen. nov., sp. nov. (the type species) and Bisgaardia genomospecies 1. The G+C content of the DNA was 39.5 mol%. The type strain of Bisgaardia hudsonensis gen. nov., sp. nov. is M327/99/2(T) (=CCUG 43067(T)=NCTC 13475(T)=98-D-690B(T)) and the reference strain of Bisgaardia genomospecies 1 is M1765/96/5 (=CCUG 59551=NCTC 13474).
Resumo:
Gram-negative, coccoid, non-motile bacteria that are catalase-, urease- and indole-negative, facultatively anaerobic and oxidase-positive were isolated from the bovine rumen using an improved selective medium for members of the Pasteurellaceae. All strains produced significant amounts of succinic acid under anaerobic conditions with glucose as substrate. Phenotypic characterization and multilocus sequence analysis (MLSA) using 16S rRNA, rpoB, infB and recN genes were performed on seven independent isolates. All four genes showed high sequence similarity to their counterparts in the genome sequence of the patent strain MBEL55E, but less than 95 % 16S rRNA gene sequence similarity to any other species of the Pasteurellaceae. Genetically these strains form a very homogeneous group in individual as well as combined phylogenetic trees, clearly separated from other genera of the family from which they can also be separated based on phenotypic markers. Genome relatedness as deduced from the recN gene showed high interspecies similarities, but again low similarity to any of the established genera of the family. No toxicity towards bovine, human or fish cells was observed and no RTX toxin genes were detected in members of the new taxon. Based on phylogenetic clustering in the MLSA analysis, the low genetic similarity to other genera and the phenotypic distinction, we suggest to classify these bovine rumen isolates as Basfia succiniciproducens gen. nov., sp. nov. The type strain is JF4016(T) (=DSM 22022(T) =CCUG 57335(T)).
Resumo:
To obtain genetic information about Campylobacter jejuni and Campylobacter coli from broilers and carcasses at slaughterhouses, we analyzed and compared 340 isolates that were collected in 2008 from the cecum right after slaughter or from the neck skin after processing. We performed rpoB sequence-based identification, multilocus sequence typing (MLST), and flaB sequence-based typing; we additionally analyzed mutations within the 23S rRNA and gyrA genes that confer resistance to macrolide and quinolone antibiotics, respectively. The rpoB-based identification resulted in a distribution of 72.0% C. jejuni and 28.0% C. coli. The MLST analysis revealed that there were 59 known sequence types (STs) and 6 newly defined STs. Most of the STs were grouped into 4 clonal complexes (CC) that are typical for poultry (CC21, CC45, CC257, and CC828), and these represented 61.8% of all of the investigated isolates. The analysis of 95 isolates from the cecum and from the corresponding carcass neck skin covered 44 different STs, and 54.7% of the pairs had matching genotypes. The data indicate that cross-contamination from various sources during slaughter may occur, although the majority of Campylobacter contamination on carcasses appeared to originate from the slaughtered flock itself. Mutations in the 23S rRNA gene were found in 3.1% of C. coli isolates, although no mutations were found in C. jejuni isolates. Mutations in the gyrA gene were observed in 18.9% of C. jejuni and 26.8% of C. coli isolates, which included two C. coli strains that carried mutations conferring resistance to both classes of antibiotics. A relationship between specific genotypes and antibiotic resistance/susceptibility was observed.