2 resultados para 12930-018

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The aim of this study was to assess the effect of the moments generated with low- and high-torque brackets. Four different bracket prescription-slot combinations of the same bracket type (Mini Diamond® Twin) were evaluated: high-torque 0.018 and 0.022 inch and low-torque 0.018 and 0.022 inch. These brackets were bonded on identical maxillary acrylic resin models with levelled and aligned teeth and each model was mounted on the orthodontic measurement and simulation system (OMSS). Ten specimens of 0.017 × 0.025 inch and ten 0.019 × 0.025 inch stainless steel archwires (ORMCO) were evaluated in the low- and high-torque 0.018 inch and 0.022 inch brackets, respectively. The wires were ligated with elastomerics into the brackets and each measurement was repeated once after religation. Two-way analysis of variance and t-test were conducted to compare the generated moments between wires at low- and high-torque brackets separately. The maximum moment generated by the 0.017 × 0.025 inch stainless steel archwire in the 0.018 inch brackets at +15 degrees ranged from 14.33 and 12.95 Nmm for the high- and low-torque brackets, respectively. The measured torque in the 0.022 inch brackets with the 0.019 × 0.025 inch stainless steel archwire was 9.32 and 6.48 Nmm, respectively. The recorded differences of maximum moments between the high- and low-torque series were statistically significant. High-torque brackets produced higher moments compared with low-torque brackets. Additionally, in both high- and low-torque configurations, the thicker 0.019 × 0.025 inch steel archwire in the 0.022 inch slot system generated lower moments in comparison with the 0.017 × 0.025 inch steel archwire in the 0.018 inch slot system.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

OBJECTIVE To compare the archwires inserted during the final stages of the orthodontic treatment with the generated moments at 0.018- and 0.022-inch brackets. MATERIALS AND METHODS The same bracket type, in terms of prescription, was evaluated in both slot dimensions. The brackets were bonded on two identical maxillary acrylic resin models, and each model was mounted on the orthodontic measurement and simulation system. Ten 0.017 × 0.025-inch TMA and ten 0.017 × 0.025-inch stainless steel archwires were evaluated in the 0.018-inch brackets. In the 0.022-inch brackets, ten 0.019 × 0.025-inch TMA and ten 0.019 × 0.025-inch stainless steel archwires were measured. A 15° buccal root torque (+15°) and then a 15° palatal root torque (-15°) were gradually applied to the right central incisor bracket, and the moments were recorded at these positions. A t-test was conducted to compare the generated moments between wires within the 0.018- and 0.022-inch bracket groups separately. RESULTS The 0.017 × 0.025-inch archwire in the 0.018-inch brackets generated mean moments of 9.25 Nmm and 14.2 Nmm for the TMA and stainless steel archwires, respectively. The measured moments in the 0.022-inch brackets with the 0.019 × 0.025-inch TMA and stainless steel archwires were 6.6 Nmm and 9.3 Nmm, respectively. CONCLUSION The 0.017 × 0.025-inch stainless steel and β-Ti archwires in the 0.018-inch slot generated higher moments than the 0.019 × 0.025-inch archwires because of lower torque play. This difference is exaggerated in steel archwires, in comparison with the β-Ti, because of differences in stiffness. The differences of maximum moments between the archwires of the same cross-section but different alloys were statistically significant at both slot dimensions.