14 resultados para 110-671
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Non-invasive systolic blood pressure (SBP) measurement is a commonly used triaging tool for trauma patients. A SBP of <90mmHg has represented the threshold for hypotension for many years, but recent studies have suggested redefining hypotension at lower levels. We therefore examined the association between SBP and mortality in penetrating trauma patients.
Resumo:
Non-invasive systolic blood pressure (SBP) measurement is often used in triaging trauma patients. Traditionally, SBP< 90 mm Hg has represented the threshold for hypotension, but recent studies have suggested redefining hypotension as SBP < 110 mm Hg. This study aims to examine the association of SBP with mortality in blunt trauma patients.
Resumo:
Background. The definition of fever, and thus fever and neutropenia (FN), varies between different pediatric oncology centers. Higher temperature limit should reduce FN rates, but may increase rates of FN with complications by delaying therapy. This study determined if different fever definitions are associated with different FN rates. Procedure. Two pediatric oncology centers had used three fever definitions in 2004–2011: ear temperature >=38.5°C persisting >=2 hours (low definition); axillary temperature >=38.5°C >=2 hours or >=39.0°C once (middle); and ear temperature >=39.0°C once (high). Clinical information was retrospectively extracted from charts. FN rates were compared using mixed Poisson regression. Results. In 521 pediatric patients with cancer, 783 FN were recorded during 6,009 months cumulative chemotherapy exposure time (501 years; rate, 0.13/month [95% CI, 0.12–0.14]), 124 of them with bacteremia (16%; 0.021/month [0.017–0.025]). In univariate analysis, the high versus low fever definition was associated with a lower FN rate (0.10/month [0.08–0.11] vs. 0.15/month [0.13–0.16]; rate ratio, 0.66 [0.45–0.97]; P ¼ 0.036), the middle definition was intermediate (0.13/month [0.11–0.15]). This difference was not confirmed in multivariate analysis (rate ratio, 0.94 [0.67–1.33]; P ¼ 0.74). The high versus low definition was not associated with an increased rate of FN with bacteremia (multivariate rate ratio, 1.39 [0.53–3.62]; P ¼ 0.50). Conclusion. A higher fever definition was not associated with a lower FN rate, nor with an increased rate of FN with bacteremia. These may be false negative findings due to methodological limitations. These questions, with their potential impact on health-related quality of life, and on costs, need to be assessed in prospective studies.
Resumo:
Variations of the surface structure and composition of the Au(110) electrode during the formation/lifting of the surface reconstruction and during the surface oxidation/reduction in 0.1 M aqueous sulfuric acid were studied by cyclic voltammetry, scanning tunneling microscopy and shell-isolated nanoparticle enhanced Raman spectroscopy. Annealing of the Au(110) electrode leads to a thermally-induced reconstruction formed by intermixed (1×3) and (1×2) phases. In a 0.1 M H2SO4 solution, the decrease of the potential of the atomically smooth Au(110)-(1×1) surface leads to the formation of a range of structures with increasing surface corrugation. The electrochemical oxidation of the Au(110) surface starts by the formation of anisotropic atomic rows of gold oxide. At higher potentials we observed a disordered structure of the surface gold oxide, similar to the one found for the Au(111) surface.
Resumo:
BACKGROUND After cardiac surgery with cardiopulmonary bypass (CPB), acquired coagulopathy often leads to post-CPB bleeding. Though multifactorial in origin, this coagulopathy is often aggravated by deficient fibrinogen levels. OBJECTIVE To assess whether laboratory and thrombelastometric testing on CPB can predict plasma fibrinogen immediately after CPB weaning. PATIENTS / METHODS This prospective study in 110 patients undergoing major cardiovascular surgery at risk of post-CPB bleeding compares fibrinogen level (Clauss method) and function (fibrin-specific thrombelastometry) in order to study the predictability of their course early after termination of CPB. Linear regression analysis and receiver operating characteristics were used to determine correlations and predictive accuracy. RESULTS Quantitative estimation of post-CPB Clauss fibrinogen from on-CPB fibrinogen was feasible with small bias (+0.19 g/l), but with poor precision and a percentage of error >30%. A clinically useful alternative approach was developed by using on-CPB A10 to predict a Clauss fibrinogen range of interest instead of a discrete level. An on-CPB A10 ≤10 mm identified patients with a post-CPB Clauss fibrinogen of ≤1.5 g/l with a sensitivity of 0.99 and a positive predictive value of 0.60; it also identified those without a post-CPB Clauss fibrinogen <2.0 g/l with a specificity of 0.83. CONCLUSIONS When measured on CPB prior to weaning, a FIBTEM A10 ≤10 mm is an early alert for post-CPB fibrinogen levels below or within the substitution range (1.5-2.0 g/l) recommended in case of post-CPB coagulopathic bleeding. This helps to minimize the delay to data-based hemostatic management after weaning from CPB.
Resumo:
This study reports the chemical composition of particles present along Greenland’s North Greenland Eemian Ice Drilling (NEEM) ice core, back to 110,000 years before present. Insoluble and soluble particles larger than 0.45 μm were extracted from the ice core by ice sublimation, and their chemical composition was analyzed using scanning electron microscope and energy dispersive X-ray spectroscopy and micro-Raman spectroscopy. We show that the dominant insoluble components are silicates, whereas NaCl, Na₂SO₄, CaSO ₄, and CaCO₃ represent major soluble salts. For the first time, particles of CaMg(CO₃)₂ and Ca(NO₃)₂ 4H₂O are identified in a Greenland ice core. The chemical speciation of salts varies with past climatic conditions. Whereas the fraction of Na salts (NaCl + Na₂SO₄) exceeds that of Ca salts (CaSO₄+ CaCO₃) during the Holocene (0.6–11.7 kyr B.P.), the two fractions are similar during the Bølling-Allerød period (12.9–14.6 kyr B.P.). During cold climate such as over the Younger Dryas (12.0–12.6 kyr B.P.) and the Last Glacial Maximum (15.0–26.9 kyr B.P.), the fraction of Ca salts exceeds that of Na salts, showing that the most abundant ion generally controls the salt budget in each period. High-resolution analyses reveal changing particle compositions: those in Holocene ice show seasonal changes, and those in LGM ice show a difference between cloudy bands and clear layers, which again can be largely explained by the availability of ionic components in the atmospheric aerosol body of air masses reaching Greenland.
Resumo:
Superparamagnetic iron oxide nanoparticles for biomedical applications are usually coated with organic molecules to form a steric barrier against agglomeration. The stability of these coatings is well established in the synthesis medium but is more difficult to assess in physiological environment. To obtain a first theoretical estimate of their stability in such an environment, we perform density functional theory calculations of the adsorption of water, polyvinyl alcohol (PVA) and polyethylene glycol (PEG) coating molecules, as well as the monomer and dimer of glycine as a prototype short peptide, on the (110) surface of magnetite (Fe3O4) in vacuo. Our results show that PVA binds significantly stronger to the surface than both PEG and glycine, while the difference between the latter two is quite small. Depending on the coverage, the wateradsorption strength is intermediate between PVA and glycine. Due to its strongly interacting OH side groups, PVA is likely to remain bound to the surface in the presence of short peptides. This stability will have to be further assessed by molecular dynamics in the solvated state for which the present work forms the basis.