2 resultados para 11-102
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
BACKGROUND: Yellow fever vaccine (17DV) has been investigated incompletely in human immunodeficiency virus (HIV)-infected patients, and adequate immunogenicity and safety are of concern in this population. METHODS: In the Swiss HIV Cohort Study, we identified 102 patients who received 17DV while they were HIV infected. We analyzed neutralization titers (NTs) after 17DV administration using the plaque reduction neutralization test. NTs of 1:>or=10 were defined as reactive, and those of 1:<10 were defined as nonreactive, which was considered to be nonprotective. The results were compared with data for HIV-uninfected individuals. Serious adverse events were defined as hospitalization or death within 6 weeks after receipt of 17DV. RESULTS: At the time of 17DV administration, the median CD4 cell count was 537 cells/mm(3) (range, 11-1730 cells/mm(3)), and the HIV RNA level was undetectable in 41 of 102 HIV-infected patients. During the first year after vaccination, fewer HIV-infected patients (65 [83%] of 78; P = .01) than HIV-uninfected patients revealed reactive NTs, and their NTs were significantly lower (P < .001) than in HIV-uninfected individuals. Eleven patients with initially reactive NTs lost these reactive NTs
Resumo:
BACKGROUND Management of persistent low-level viraemia (pLLV) in patients on combined antiretroviral therapy (cART) with previously undetectable HIV viral loads (VLs) is challenging. We examined virological outcome and management among patients enrolled in the Swiss HIV Cohort Study (SHCS). METHODS In this retrospective study (2000-2011), pLLV was defined as a VL of 21-400 copies/mL on ≥3 consecutive plasma samples with ≥8 weeks between first and last analyses, in patients undetectable for ≥24 weeks on cART. Control patients had ≥3 consecutive undetectable VLs over ≥32 weeks. Virological failure (VF), analysed in the pLLV patient group, was defined as a VL>400 copies/mL. RESULTS Among 9972 patients, 179 had pLLV and 5389 were controls. Compared to controls, pLLV patients were more often on unboosted PI-based (adjusted odds ratio, aOR, [95%CI] 3.2 [1.8-5.9]) and NRTI-only combinations (aOR 2.1 [1.1-4.2]) than on NNRTI and boosted PI-based regimens. At 48 weeks, 102/155 pLLV patients (66%) still had pLLV, 19/155 (12%) developed VF, and 34/155 (22%) had undetectable VLs. Predictors of VF were previous VF (aOR 35 [3.8-315]), unboosted PI-based (aOR 12.8 [1.7-96]) or NRTI-only combinations (aOR 115 [6.8-1952]), and VLs>200 during pLLV (aOR 3.7 [1.1-12]). No VF occurred in patients with persistent very LLV (pVLLV, 21-49 copies/mL; N=26). At 48 weeks, 29/39 patients (74%) who changed cART had undetectable VLs, compared to 19/74 (26%) without change (P<0.001). CONCLUSIONS Among patients with pLLV, VF was predicted by previous VF, cART regimen and VL ≥200. Most patients who changed cART had undetectable VLs 48 weeks later. These findings support cART modification for pLLV >200 copies/ml.