35 resultados para 1,2,3-substituted cyclopropane
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Polychlorinated naphthalenes are environmentally relevant compounds that are measured in biota at concentrations in the μg/kg lipid range. Despite their widespread occurrence, literature data on the accumulation and effects of these compounds in aquatic ecosystems are sparsely available. The goal of this study was to gain insights into the biomagnification and effects of 1,2,3,5,7-pentachloronaphthalene (PeCN52) in an experimental food chain consisting of benthic worms and juvenile rainbow trout. Worms were contaminated with PeCN52 by passive dosing from polydimethylsiloxane silicone. The contaminated worms were then used to feed the juvenile rainbow trout at 0.12, 0.25 or 0.50 μg/g fish wet weight/day, and the resulting internal whole-body concentrations of the individual fish were linked to biological responses. A possible involvement of the cellular detoxification system was explored by measuring PeCN52-induced expression of the phase I biotransformation enzyme gene cyp1a1 and the ABC transporter gene abcb1a. At the end of the 28-day study, biomagnification factors were similar for all dietary intake levels with values between 0.5 and 0.7 kg lipid(fish)/kg lipid(worm). The average uptake efficiency of 60% indicated that a high amount of PeCN52 was transferred from the worms to the fish. Internal concentrations of up to 175 mg/kg fish lipid in the highest treatment level did not result in effects on survival, behavior, or growth of the juvenile trout, but were associated with the induction of phase I metabolism which was evident from the significant up-regulation of cyp1a1 expression in the liver. In contrast, no changes were seen in abcb1a transcript levels.
Resumo:
In the crystal structure of the title compound (systematic name: 2,3-dichlorobenzene-1,4-diol 2,3-dichlorocyclohexa-2,5-diene-1,4-dione monohydrate), C(6)H(4)Cl(2)O(2)center dot C(6)H(2)Cl(2)O(2)center dot H(2)O, the 2,3-dichloro-1,4-hydroquinone donor (D) and the 2,3-dichloro-1,4-benzoquinone acceptor (A) molecules form alternating stacks along [100]. Their molecular planes [maximum deviations for non-H atoms: 0.0133 (14) (D) and 0.0763 (14) angstrom (A)] are inclined to one another by 1.45 (3)degrees and are thus almost parallel. There are pi-pi interactions involving the D and A molecules, with centroid-centroid distances of 3.5043 (9) and 3.9548 (9) angstrom. Intermolecular O-H center dot center dot center dot O hydrogen bonds involving the water molecule and the hydroxy and ketone groups lead to the formation of two-dimensional networks lying parallel to (001). These networks are linked by C-H center dot center dot center dot O interactions, forming a three-dimensional structure.
Resumo:
Matrilins are oligomeric extracellular matrix adaptor proteins mediating interactions between collagen fibrils and other matrix constituents. All four matrilins are expressed in cartilage and mutations in the human gene encoding matrilin-3 (MATN3) are associated with different forms of chondrodysplasia. Surprisingly, however, Matn3-null as well as Matn1- and Matn2-null mice do not show an overt skeletal phenotype, suggesting a dominant negative pathomechanism for the human disorders and redundancy/compensation among the family members in the knock-out situation. Here, we show that mice lacking both matrilin-1 and matrilin-3 develop an apparently normal skeleton, but exhibit biochemical and ultrastructural abnormalities of the knee joint cartilage. At the protein level, an altered SDS-PAGE band pattern and a clear up-regulation of the homotrimeric form of matrilin-4 were evident in newborn Matn1/Matn3 and Matn1 knock-out mice, but not in Matn3-null mice. The ultrastructure of the cartilage matrix after conventional chemical fixation was grossly normal; however, electron microscopy of high pressure frozen and freeze-substituted samples, revealed two consistent observations: 1) moderately increased collagen fibril diameters throughout the epiphysis and the growth plate in both single and double mutants; and 2) increased collagen volume density in Matn1(-/-)/Matn3(-/-) and Matn3(-/-) mice. Taken together, our results demonstrate that matrilin-1 and matrilin-3 modulate collagen fibrillogenesis in cartilage and provide evidence that biochemical compensation might exist between matrilins.