4 resultados para 090802 Food Engineering

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

While the WTO agreements do not regulate the use of biotechnology per se, their rules can have a profound impact on the use of the technology for both commercial and non-commercial purposes. This book seeks to identify the challenges to international trade regulation that arise from biotechnology. The contributions examine whether existing international obligations of WTO Members are appropriate to deal with the issues arising for the use of biotechnology and whether there is a need for new international legal instruments, including a potential WTO Agreement on Biotechnology. They combine various perspectives on and topics relating to genetic engineering and trade, including human rights and gender; intellectual property rights; traditional knowledge and access and benefit sharing; food security, trade and agricultural production and food safety; and medical research, cloning and international trade.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Computer vision-based food recognition could be used to estimate a meal's carbohydrate content for diabetic patients. This study proposes a methodology for automatic food recognition, based on the Bag of Features (BoF) model. An extensive technical investigation was conducted for the identification and optimization of the best performing components involved in the BoF architecture, as well as the estimation of the corresponding parameters. For the design and evaluation of the prototype system, a visual dataset with nearly 5,000 food images was created and organized into 11 classes. The optimized system computes dense local features, using the scale-invariant feature transform on the HSV color space, builds a visual dictionary of 10,000 visual words by using the hierarchical k-means clustering and finally classifies the food images with a linear support vector machine classifier. The system achieved classification accuracy of the order of 78%, thus proving the feasibility of the proposed approach in a very challenging image dataset.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we propose novel methodologies for the automatic segmentation and recognition of multi-food images. The proposed methods implement the first modules of a carbohydrate counting and insulin advisory system for type 1 diabetic patients. Initially the plate is segmented using pyramidal mean-shift filtering and a region growing algorithm. Then each of the resulted segments is described by both color and texture features and classified by a support vector machine into one of six different major food classes. Finally, a modified version of the Huang and Dom evaluation index was proposed, addressing the particular needs of the food segmentation problem. The experimental results prove the effectiveness of the proposed method achieving a segmentation accuracy of 88.5% and recognition rate equal to 87%

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is great demand for easily-accessible, user-friendly dietary self-management applications. Yet accurate, fully-automatic estimation of nutritional intake using computer vision methods remains an open research problem. One key element of this problem is the volume estimation, which can be computed from 3D models obtained using multi-view geometry. The paper presents a computational system for volume estimation based on the processing of two meal images. A 3D model of the served meal is reconstructed using the acquired images and the volume is computed from the shape. The algorithm was tested on food models (dummy foods) with known volume and on real served food. Volume accuracy was in the order of 90 %, while the total execution time was below 15 seconds per image pair. The proposed system combines simple and computational affordable methods for 3D reconstruction, remained stable throughout the experiments, operates in near real time, and places minimum constraints on users.