65 resultados para 080708 Records and Information Management (excl. Business Records and Information Management)
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
The Business and Information Technologies (BIT) project strives to reveal new insights into how modern IT impacts organizational structures and business practices using empirical methods. Due to its international scope, it allows for inter-country comparison of empirical results. Germany — represented by the European School of Management and Technologies (ESMT) and the Institute of Information Systems at Humboldt-Universität zu Berlin — joined the BIT project in 2006. This report presents the result of the first survey conducted in Germany during November–December 2006. The key results are as follows: • The most widely adopted technologies and systems in Germany are websites, wireless hardware and software, groupware/productivity tools, and enterprise resource planning (ERP) systems. The biggest potential for growth exists for collaboration and portal tools, content management systems, business process modelling, and business intelligence applications. A number of technological solutions have not yet been adopted by many organizations but also bear some potential, in particular identity management solutions, Radio Frequency Identification (RFID), biometrics, and third-party authentication and verification. • IT security remains on the top of the agenda for most enterprises: budget spending was increasing in the last 3 years. • The workplace and work requirements are changing. IT is used to monitor employees' performance in Germany, but less heavily compared to the United States (Karmarkar and Mangal, 2007).1 The demand for IT skills is increasing at all corporate levels. Executives are asking for more and better structured information and this, in turn, triggers the appearance of new decision-making tools and online technologies on the market. • The internal organization of companies in Germany is underway: organizations are becoming flatter, even though the trend is not as pronounced as in the United States (Karmarkar and Mangal, 2007), and the geographical scope of their operations is increasing. Modern IT plays an important role in enabling this development, e.g. telecommuting, teleconferencing, and other web-based collaboration formats are becoming increasingly popular in the corporate context. • The degree to which outsourcing is being pursued is quite limited with little change expected. IT services, payroll, and market research are the most widely outsourced business functions. This corresponds to the results from other countries. • Up to now, the adoption of e-business technologies has had a rather limited effect on marketing functions. Companies tend to extract synergies from traditional printed media and on-line advertising. • The adoption of e-business has not had a major impact on marketing capabilities and strategy yet. Traditional methods of customer segmentation are still dominating. The corporate identity of most organizations does not change significantly when going online. • Online sales channel are mainly viewed as a complement to the traditional distribution means. • Technology adoption has caused production and organizational costs to decrease. However, the costs of technology acquisition and maintenance as well as consultancy and internal communication costs have increased.
Resumo:
SUMMARY There is interest in the potential of companion animal surveillance to provide data to improve pet health and to provide early warning of environmental hazards to people. We implemented a companion animal surveillance system in Calgary, Alberta and the surrounding communities. Informatics technologies automatically extracted electronic medical records from participating veterinary practices and identified cases of enteric syndrome in the warehoused records. The data were analysed using time-series analyses and a retrospective space-time permutation scan statistic. We identified a seasonal pattern of reports of occurrences of enteric syndromes in companion animals and four statistically significant clusters of enteric syndrome cases. The cases within each cluster were examined and information about the animals involved (species, age, sex), their vaccination history, possible exposure or risk behaviour history, information about disease severity, and the aetiological diagnosis was collected. We then assessed whether the cases within the cluster were unusual and if they represented an animal or public health threat. There was often insufficient information recorded in the medical record to characterize the clusters by aetiology or exposures. Space-time analysis of companion animal enteric syndrome cases found evidence of clustering. Collection of more epidemiologically relevant data would enhance the utility of practice-based companion animal surveillance.
Resumo:
Large amounts of animal health care data are present in veterinary electronic medical records (EMR) and they present an opportunity for companion animal disease surveillance. Veterinary patient records are largely in free-text without clinical coding or fixed vocabulary. Text-mining, a computer and information technology application, is needed to identify cases of interest and to add structure to the otherwise unstructured data. In this study EMR's were extracted from veterinary management programs of 12 participating veterinary practices and stored in a data warehouse. Using commercially available text-mining software (WordStat™), we developed a categorization dictionary that could be used to automatically classify and extract enteric syndrome cases from the warehoused electronic medical records. The diagnostic accuracy of the text-miner for retrieving cases of enteric syndrome was measured against human reviewers who independently categorized a random sample of 2500 cases as enteric syndrome positive or negative. Compared to the reviewers, the text-miner retrieved cases with enteric signs with a sensitivity of 87.6% (95%CI, 80.4-92.9%) and a specificity of 99.3% (95%CI, 98.9-99.6%). Automatic and accurate detection of enteric syndrome cases provides an opportunity for community surveillance of enteric pathogens in companion animals.
Resumo:
Palaeoclimatic information can be retrieved from the diffusion of the stable water isotope signal during firnification of snow. The diffusion length, a measure for the amount of diffusion a layer has experienced, depends on the firn temperature and the accumulation rate. We show that the estimation of the diffusion length using power spectral densities (PSDs) of the record of a single isotope species can be biased by uncertainties in spectral properties of the isotope signal prior to diffusion. By using a second water isotope and calculating the difference in diffusion lengths between the two isotopes, this problem is circumvented. We study the PSD method applied to two isotopes in detail and additionally present a new forward diffusion method for retrieving the differential diffusion length based on the Pearson correlation between the two isotope signals. The two methods are discussed and extensively tested on synthetic data which are generated in a Monte Carlo manner. We show that calibration of the PSD method with this synthetic data is necessary to be able to objectively determine the differential diffusion length. The correlation-based method proves to be a good alternative for the PSD method as it yields precision equal to or somewhat higher than the PSD method. The use of synthetic data also allows us to estimate the accuracy and precision of the two methods and to choose the best sampling strategy to obtain past temperatures with the required precision. In addition to application to synthetic data the two methods are tested on stable-isotope records from the EPICA (European Project for Ice Coring in Antarctica) ice core drilled in Dronning Maud Land, Antarctica, showing that reliable firn temperatures can be reconstructed with a typical uncertainty of 1.5 and 2 °C for the Holocene period and 2 and 2.5 °C for the last glacial period for the correlation and PSD method, respectively.
Resumo:
The DEEP site sediment sequence obtained during the ICDP SCOPSCO project at Lake Ohrid was dated using tephrostratigraphic information, cyclostratigraphy, and orbital tuning through the marine isotope stages (MIS) 15-1. Although this approach is suitable for the generation of a general chronological framework of the long succession, it is insufficient to resolve more detailed palaeoclimatological questions, such as leads and lags of climate events between marine and terrestrial records or between different regions. Here, we demonstrate how the use of different tie points can affect cyclostratigraphy and orbital tuning for the period between ca. 140 and 70 ka and how the results can be correlated with directly/indirectly radiometrically dated Mediterranean marine and continental proxy records. The alternative age model presented here shows consistent differences with that initially proposed by Francke et al. (2015) for the same interval, in particular at the level of the MIS6-5e transition. According to this new age model, different proxies from the DEEP site sediment record support an increase of temperatures between glacial to interglacial conditions, which is almost synchronous with a rapid increase in sea surface temperature observed in the western Mediterranean. The results show how a detailed study of independent chronological tie points is important to align different records and to highlight asynchronisms of climate events. Moreover, Francke et al. (2016) have incorporated the new chronology proposed for tephra OH-DP-0499 in the final DEEP age model. This has reduced substantially the chronological discrepancies between the DEEP site age model and the model proposed here for the last glacial-interglacial transition.
Resumo:
SMARTDIAB is a platform designed to support the monitoring, management, and treatment of patients with type 1 diabetes mellitus (T1DM), by combining state-of-the-art approaches in the fields of database (DB) technologies, communications, simulation algorithms, and data mining. SMARTDIAB consists mainly of two units: 1) the patient unit (PU); and 2) the patient management unit (PMU), which communicate with each other for data exchange. The PMU can be accessed by the PU through the internet using devices, such as PCs/laptops with direct internet access or mobile phones via a Wi-Fi/General Packet Radio Service access network. The PU consists of an insulin pump for subcutaneous insulin infusion to the patient and a continuous glucose measurement system. The aforementioned devices running a user-friendly application gather patient's related information and transmit it to the PMU. The PMU consists of a diabetes data management system (DDMS), a decision support system (DSS) that provides risk assessment for long-term diabetes complications, and an insulin infusion advisory system (IIAS), which reside on a Web server. The DDMS can be accessed from both medical personnel and patients, with appropriate security access rights and front-end interfaces. The DDMS, apart from being used for data storage/retrieval, provides also advanced tools for the intelligent processing of the patient's data, supporting the physician in decision making, regarding the patient's treatment. The IIAS is used to close the loop between the insulin pump and the continuous glucose monitoring system, by providing the pump with the appropriate insulin infusion rate in order to keep the patient's glucose levels within predefined limits. The pilot version of the SMARTDIAB has already been implemented, while the platform's evaluation in clinical environment is being in progress.