2 resultados para 07-SA-01
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
1. Exogenous somatostatin inhibits glucagon secretion and prevents ketoacidosis in diabetic patients, but has the therapeutic disadvantage of requiring continuous intravenous infusion to exhibit these effects. 2. Consequently, we examined the effect of subcutaneous administration of the long-acting somatostatin analogue octreotide (SMS 201-995) on early ketogenesis in diabetic ketoacidosis. On two separate occasions insulin was withdrawn over a period of 9 h from seven type I diabetic patients. On the second occasion the patients were given 50 micrograms octreotide s.c. before the insulin withdrawal and every 3 h during insulin withdrawal. 3. Differences in integrated free fatty acid responses (4706 +/- 1227 mumol l-1 h vs 3026 +/- 835 mumol l-1 h, AUC, P = NS) were not significant, but the peak increments of acetoacetate (1413 +/- 354 mumol l-1 vs 612 +/- 176 mumol l-1, P less than 0.05), beta-hydroxybutyrate (2180 +/- 475 mumol l-1 vs 922 +/- 246 mumol l-1, P less than 0.01) and the decrements in plasma bicarbonate (-8 +/- 1 mumol l-1 vs -4 +/- 1 mumol l-1, P less than 0.05) and pH (-0.07 +/- 0.01 vs -0.03 +/- 0.01, P less than 0.05) were significantly less with octreotide. 4. At the same time peak increments of glucagon were lower with octreotide treatment (329 +/- 206 pg ml-1 vs 39 +/- 30 pg ml-1, P less than 0.05). 5. We conclude that, despite accelerated lipolysis and provision of substrate for ketogenesis during insulin withdrawal, this somatostatin analogue significantly reduces ketogenesis resulting from insulin deprivation, probably secondary to decreasing glucagon secretion. This drug may be useful in short term prophylactic treatment of diabetic patients during periods of increased risk for ketoacidosis.
Resumo:
A new methodology based on combining active and passive remote sensing and simultaneous and collocated radiosounding data to study the aerosol hygroscopic growth effects on the particle optical and microphysical properties is presented. The identification of hygroscopic growth situations combines the analysis of multispectral aerosol particle backscatter coefficient and particle linear depolarization ratio with thermodynamic profiling of the atmospheric column. We analyzed the hygroscopic growth effects on aerosol properties, namely the aerosol particle backscatter coefficient and the volume concentration profiles, using data gathered at Granada EARLINET station. Two study cases, corresponding to different aerosol loads and different aerosol types, are used for illustrating the potential of this methodology. Values of the aerosol particle backscatter coefficient enhancement factors range from 2.1 ± 0.8 to 3.9 ± 1.5, in the ranges of relative humidity 60–90 and 40–83%, being similar to those previously reported in the literature. Differences in the enhancement factor are directly linked to the composition of the atmospheric aerosol. The largest value of the aerosol particle backscatter coefficient enhancement factor corresponds to the presence of sulphate and marine particles that are more affected by hygroscopic growth. On the contrary, the lowest value of the enhancement factor corresponds to an aerosol mixture containing sulphates and slight traces of mineral dust. The Hänel parameterization is applied to these case studies, obtaining results within the range of values reported in previous studies, with values of the γ exponent of 0.56 ± 0.01 (for anthropogenic particles slightly influenced by mineral dust) and 1.07 ± 0.01 (for the situation dominated by anthropogenic particles), showing the convenience of this remote sensing approach for the study of hygroscopic effects of the atmospheric aerosol under ambient unperturbed conditions. For the first time, the retrieval of the volume concentration profiles for these cases using the Lidar Radiometer Inversion Code (LIRIC) allows us to analyze the aerosol hygroscopic growth effects on aerosol volume concentration, observing a stronger increase of the fine mode volume concentration with increasing relative humidity.