55 resultados para 020110 Stellar Astronomy and Planetary Systems

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

100.00% 100.00%

Publicador:

Resumo:

A scientific forum on “The Future Science of Exoplanets and Their Systems,” sponsored by Europlanet* and the International Space Science Institute (ISSI)† and co-organized by the Center for Space and Habitability (CSH)‡ of the University of Bern, was held during December 5 and 6, 2012, in Bern, Switzerland. It gathered 24 well-known specialists in exoplanetary, Solar System, and stellar science to discuss the future of the fast-expanding field of exoplanetary research, which now has nearly 1000 objects to analyze and compare and will develop even more quickly over the coming years. The forum discussions included a review of current observational knowledge, efforts for exoplanetary atmosphere characterization and their formation, water formation, atmospheric evolution, habitability aspects, and our understanding of how exoplanets interact with their stellar and galactic environment throughout their history. Several important and timely research areas of focus for further research efforts in the field were identified by the forum participants. These scientific topics are related to the origin and formation of water and its delivery to planetary bodies and the role of the disk in relation to planet formation, including constraints from observations as well as star-planet interaction processes and their consequences for atmosphere-magnetosphere environments, evolution, and habitability. The relevance of these research areas is outlined in this report, and possible themes for future ISSI workshops are identified that may be proposed by the international research community over the coming 2–3 years.

Relevância:

100.00% 100.00%

Publicador:

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PLATO 2.0 has recently been selected for ESA’s M3 launch opportunity (2022/24). Providing accurate key planet parameters (radius, mass, density and age) in statistical numbers, it addresses fundamental questions such as: How do planetary systems form and evolve? Are there other systems with planets like ours, including potentially habitable planets? The PLATO 2.0 instrument consists of 34 small aperture telescopes (32 with 25 s readout cadence and 2 with 2.5 s candence) providing a wide field-of-view (2232 deg 2) and a large photometric magnitude range (4–16 mag). It focusses on bright (4–11 mag) stars in wide fields to detect and characterize planets down to Earth-size by photometric transits, whose masses can then be determined by ground-based radial-velocity follow-up measurements. Asteroseismology will be performed for these bright stars to obtain highly accurate stellar parameters, including masses and ages. The combination of bright targets and asteroseismology results in high accuracy for the bulk planet parameters: 2 %, 4–10 % and 10 % for planet radii, masses and ages, respectively. The planned baseline observing strategy includes two long pointings (2–3 years) to detect and bulk characterize planets reaching into the habitable zone (HZ) of solar-like stars and an additional step-and-stare phase to cover in total about 50 % of the sky. PLATO 2.0 will observe up to 1,000,000 stars and detect and characterize hundreds of small planets, and thousands of planets in the Neptune to gas giant regime out to the HZ. It will therefore provide the first large-scale catalogue of bulk characterized planets with accurate radii, masses, mean densities and ages. This catalogue will include terrestrial planets at intermediate orbital distances, where surface temperatures are moderate. Coverage of this parameter range with statistical numbers of bulk characterized planets is unique to PLATO 2.0. The PLATO 2.0 catalogue allows us to e.g.: - complete our knowledge of planet diversity for low-mass objects, - correlate the planet mean density-orbital distance distribution with predictions from planet formation theories,- constrain the influence of planet migration and scattering on the architecture of multiple systems, and - specify how planet and system parameters change with host star characteristics, such as type, metallicity and age. The catalogue will allow us to study planets and planetary systems at different evolutionary phases. It will further provide a census for small, low-mass planets. This will serve to identify objects which retained their primordial hydrogen atmosphere and in general the typical characteristics of planets in such low-mass, low-density range. Planets detected by PLATO 2.0 will orbit bright stars and many of them will be targets for future atmosphere spectroscopy exploring their atmosphere. Furthermore, the mission has the potential to detect exomoons, planetary rings, binary and Trojan planets. The planetary science possible with PLATO 2.0 is complemented by its impact on stellar and galactic science via asteroseismology as well as light curves of all kinds of variable stars, together with observations of stellar clusters of different ages. This will allow us to improve stellar models and study stellar activity. A large number of well-known ages from red giant stars will probe the structure and evolution of our Galaxy. Asteroseismic ages of bright stars for different phases of stellar evolution allow calibrating stellar age-rotation relationships. Together with the results of ESA’s Gaia mission, the results of PLATO 2.0 will provide a huge legacy to planetary, stellar and galactic science.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIM: To assess survival rates and complications of root-filled teeth restored with or without post-and-core systems over a mean observation period of >or=4 years. METHODOLOGY: A total of 325 single- and multirooted teeth in 183 subjects treated in a private practice were root filled and restored with either a cast post-and-core or with a prefabricated titanium post and composite core. Root-filled teeth without post-retained restorations served as controls. The restored teeth served as abutments for single unit metal-ceramic or composite crowns or fixed bridges. Teeth supporting cantilever bridges, overdentures or telescopic crowns were excluded. RESULTS: Seventeen teeth in 17 subjects were lost to follow-up (17/325: 5.2%). The mean observation period was 5.2 +/- 1.8 (SD) years for restorations with titanium posts, 6.2 +/- 2.0 (SD) years for cast post-and-cores and 4.4 +/- 1.7 (SD) years for teeth without posts. Overall, 54% of build-ups included the incorporation of a titanium post and 26.5% the cementation of a cast post-and-core. The remaining 19.5% of the teeth were restored without intraradicular retention. The adjusted 5-year tooth survival rate amounted to 92.5% for teeth restored with titanium posts, to 97.1% for teeth restored with cast post-and-cores and to 94.3% for teeth without post restorations, respectively. The most frequent complications included root fracture (6.2%), recurrent caries (1.9%), post-treatment periradicular disease (1.6%) and loss of retention (1.3%). CONCLUSION: Provided that high-quality root canal treatment and restorative protocols are implemented, high survival and low complication rates of single- and multirooted root-filled teeth used as abutments for fixed restorations can be expected after a mean observation period of >or=4 years.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Abelian and non-Abelian gauge theories are of central importance in many areas of physics. In condensed matter physics, AbelianU(1) lattice gauge theories arise in the description of certain quantum spin liquids. In quantum information theory, Kitaev’s toric code is a Z(2) lattice gauge theory. In particle physics, Quantum Chromodynamics (QCD), the non-Abelian SU(3) gauge theory of the strong interactions between quarks and gluons, is nonperturbatively regularized on a lattice. Quantum link models extend the concept of lattice gauge theories beyond the Wilson formulation, and are well suited for both digital and analog quantum simulation using ultracold atomic gases in optical lattices. Since quantum simulators do not suffer from the notorious sign problem, they open the door to studies of the real-time evolution of strongly coupled quantum systems, which are impossible with classical simulation methods. A plethora of interesting lattice gauge theories suggests itself for quantum simulation, which should allow us to address very challenging problems, ranging from confinement and deconfinement, or chiral symmetry breaking and its restoration at finite baryon density, to color superconductivity and the real-time evolution of heavy-ion collisions, first in simpler model gauge theories and ultimately in QCD.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Ore-forming and geoenviromental systems commonly involve coupled fluid flowand chemical reaction processes. The advanced numerical methods and computational modeling have become indispensable tools for simulating such processes in recent years. This enables many hitherto unsolvable geoscience problems to be addressed using numerical methods and computational modeling approaches. For example, computational modeling has been successfully used to solve ore-forming and mine site contamination/remediation problems, in which fluid flow and geochemical processes play important roles in the controlling dynamic mechanisms. The main purpose of this paper is to present a generalized overview of: (1) the various classes and models associated with fluid flow/chemically reacting systems in order to highlight possible opportunities and developments for the future; (2) some more general issues that need attention in the development of computational models and codes for simulating ore-forming and geoenviromental systems; (3) the related progresses achieved on the geochemical modeling over the past 50 years or so; (4) the general methodology for modeling of oreforming and geoenvironmental systems; and (5) the future development directions associated with modeling of ore-forming and geoenviromental systems.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Excavations of Neolithic (4000 – 3500 BC) and Late Bronze Age (1200 – 800 BC) wetland sites on the northern Alpine periphery have produced astonishing and detailed information about the life and human environment of prehistoric societies. It is even possible to reconstruct settlement histories and settlement dynamics, which suggest a high degree of mobility during the Neolithic. Archaeological finds—such as pottery—show local typological developments in addition to foreign influences. Furthermore, exogenous lithic forms indicate far reaching interaction. Many hundreds of bronze artefacts are recorded from the Late Bronze Age settlements, demonstrating that some wetland sites were centres of bronzework production. Exogenous forms of bronzework are relatively rare in the wetland settlements during the Late Bronze Age. However, the products produced in the lake-settlements can be found widely across central Europe, indicating their continued involvement in interregional exchange partnerships. Potential motivations and dynamics of the relationships between sites and other regions of Europe will be detailed using case studies focussing on the settlements Seedorf Lobsigensee (BE), Concise (VD), and Sutz-Lattrigen Hauptstation innen (BE), and an initial assessment of intra-site connectivity through Network Analysis of sites within the region of Lake Neuchâtel, Lake Biel, and Lake Murten.