26 resultados para . neutron radiation field

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

90.00% 90.00%

Publicador:

Resumo:

The surface of Mars, unshielded by thick atmosphere or global magnetic field, is exposed to high levels of cosmic radiation. This ionising radiation field is deleterious to the survival of dormant cells or spores and the persistence of molecular biomarkers in the subsurface, and so its characterisation is of prime astrobiological interest. Here, we present modelling results of the absorbed radiation dose as a function of depth through the Martian subsurface, suitable for calculation of biomarker persistence. A second major implementation of this dose accumulation rate data is in application of the optically stimulated luminescence technique for dating Martian sediments. We present calculations of the dose-depth profile in the Martian subsurface for various scenarios: variations of surface composition (dry regolith, ice, layered permafrost), solar minimum and maximum conditions, locations of different elevation (Olympus Mons, Hellas basin, datum altitude), and increasing atmospheric thickness over geological history. We also model the changing composition of the subsurface radiation field with depth compared between Martian locations with different shielding material, determine the relative dose contributions from primaries of different energies, and discuss particle deflection by the crustal magnetic fields.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Detailed knowledge of the characteristics of the radiation field shaped by a multileaf collimator (MLC) is essential in intensity modulated radiotherapy (IMRT). A previously developed multiple source model (MSM) for a 6 MV beam was extended to a 15 MV beam and supplemented with an accurate model of an 80-leaf dynamic MLC. Using the supplemented MSM and the MC code GEANT, lateral dose distributions were calculated in a water phantom and a portal water phantom. A field which is normally used for the validation of the step and shoot technique and a field from a realistic IMRT treatment plan delivered with dynamic MLC are investigated. To assess possible spectral changes caused by the modulation of beam intensity by an MLC, the energy spectra in five portal planes were calculated for moving slits of different widths. The extension of the MSM to 15 MV was validated by analysing energy fluences, depth doses and dose profiles. In addition, the MC-calculated primary energy spectrum was verified with an energy spectrum which was reconstructed from transmission measurements. MC-calculated dose profiles using the MSM for the step and shoot case and for the dynamic MLC case are in very good agreement with the measured data from film dosimetry. The investigation of a 13 cm wide field shows an increase in mean photon energy of up to 16% for the 0.25 cm slit compared to the open beam for 6 MV and of up to 6% for 15 MV, respectively. In conclusion, the MSM supplemented with the dynamic MLC has proven to be a powerful tool for investigational and benchmarking purposes or even for dose calculations in IMRT.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this phase III, multinational, randomized trial, the International Breast Cancer Study Group, Breast International Group, and the National Surgical Adjuvant Breast and Bowel Project will attempt to define the effectiveness of cytotoxic therapy for patients with locoregional recurrence of breast cancer. We will evaluate whether chemotherapy prolongs disease-free survival and, secondarily, whether its use improves overall survival and systemic disease-free survival. Quality of life measurements will be monitored during the first 12 months of the study. Women who have had a previous diagnosis of invasive breast cancer treated by mastectomy or breast-conserving surgery and who have undergone complete surgical excision of all macroscopic disease but who subsequently develop isolated local and/or regional ipsilateral invasive recurrence are eligible. Patients are randomized to observation/no adjuvant chemotherapy or to adjuvant chemotherapy; all suitable patients receive radiation, hormonal, and trastuzumab therapy. Radiation therapy is recommended for patients who have not received previous adjuvant radiation therapy but is required for those with microscopically positive margins. The radiation field must encompass the tumor bed plus a surrounding margin to a dose of >or= 40 Gy. Radiation therapy will be administered before, during, or after chemotherapy. All women with estrogen receptor-positive and/or progesterone receptor-positive recurrence must receive hormonal therapy, with the agent and duration to be determined by the patient's investigator. Adjuvant trastuzumab therapy is permitted for those with HER2- positive tumors, provided that intent to treat is declared before randomization. Although multidrug regimens are preferred, the agents, doses, and use of supportive therapy are at the discretion of the investigator.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Volumetric data at micrometer level resolution can be acquired within a few minutes using synchrotron-radiation-based tomographic microscopy. The field of view along the rotation axis of the sample can easily be increased by stacking several tomograms, allowing the investigation of long and thin objects at high resolution. On the contrary, an extension of the field of view in the perpendicular direction is non-trivial. This paper presents an acquisition protocol which increases the field of view of the tomographic dataset perpendicular to its rotation axis. The acquisition protocol can be tuned as a function of the reconstruction quality and scanning time. Since the scanning time is proportional to the radiation dose imparted to the sample, this method can be used to increase the field of view of tomographic microscopy instruments while optimizing the radiation dose for radiation-sensitive samples and keeping the quality of the tomographic dataset on the required level. This approach, dubbed wide-field synchrotron radiation tomographic microscopy, can increase the lateral field of view up to five times. The method has been successfully applied for the three-dimensional imaging of entire rat lung acini with a diameter of 4.1 mm at a voxel size of 1.48 microm.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Radiation metabolomics can be defined as the global profiling of biological fluids to uncover latent, endogenous small molecules whose concentrations change in a dose-response manner following exposure to ionizing radiation. In response to the potential threat of nuclear or radiological terrorism, the Center for High-Throughput Minimally Invasive Radiation Biodosimetry was established to develop field-deployable biodosimeters based, in part, on rapid analysis by mass spectrometry of readily and easily obtainable biofluids. In this review, we briefly summarize radiation biology and key events related to actual and potential nuclear disasters, discuss the important contributions the field of mass spectrometry has made to the field of radiation metabolomics, and summarize current discovery efforts to use mass spectrometry-based metabolomics to identify dose-responsive urinary constituents, and ultimately to build and deploy a noninvasive high-throughput biodosimeter.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Combined-modality treatment consisting of four to six cycles of chemotherapy followed by involved-field radiotherapy (IFRT) is the standard of care for patients with early unfavorable Hodgkin's lymphoma (HL). It is unclear whether treatment results can be improved with more intensive chemotherapy and which radiation dose needs to be applied.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVES: To analyse the results of recent studies not yet included in a 2003 report of the International Commission on Non-Ionizing Radiation Protection (ICNIRP) on occupational exposure to low-frequency electromagnetic fields as potential risk factor for neurodegenerative diseases. METHODS: A literature search was conducted in the online databases of PubMed, ISI Web of Knowledge, DIMDI and COCHRANE, as well as in specialised databases and journals. Eight studies published between January 2000 and July 2005 were included in the review. RESULTS: The findings of these studies contribute to the evidence of an association between occupational magnetic field exposure and the risk of dementia. Regarding amyotrophic lateral sclerosis, the recent results confirm earlier observations of an association with electric and electronic work and welding. Its relationship with magnetic field exposure remains unsolved. There are only few findings pointing towards an association between magnetic field exposure and Parkinson's disease. CONCLUSIONS: The epidemiological evidence for an association between occupational exposure to low-frequency electromagnetic fields and the risk of dementia has increased during the last five years. The impact of potential confounders should be evaluated in further studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

This article is a systematic review of whether everyday exposure to radiofrequency electromagnetic field (RF-EMF) causes symptoms, and whether some individuals are able to detect low-level RF-EMF (below the ICNIRP [International Commission on Non-Ionizing Radiation Protection] guidelines). Peer-reviewed articles published before August 2007 were identified by means of a systematic literature search. Meta-analytic techniques were used to pool the results from studies investigating the ability to discriminate active from sham RF-EMF exposure. RF-EMF discrimination was investigated in seven studies including a total of 182 self-declared electromagnetic hypersensitive (EHS) individuals and 332 non-EHS individuals. The pooled correct field detection rate was 4.2% better than expected by chance (95% CI: -2.1 to 10.5). There was no evidence that EHS individuals could detect presence or absence of RF-EMF better than other persons. There was little evidence that short-term exposure to a mobile phone or base station causes symptoms based on the results of eight randomized trials investigating 194 EHS and 346 non-EHS individuals in a laboratory. Some of the trials provided evidence for the occurrence of nocebo effects. In population based studies an association between symptoms and exposure to RF-EMF in the everyday environment was repeatedly observed. This review showed that the large majority of individuals who claims to be able to detect low level RF-EMF are not able to do so under double-blind conditions. If such individuals exist, they represent a small minority and have not been identified yet. The available observational studies do not allow differentiating between biophysical from EMF and nocebo effects.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A new study is presently being conducted on the exposure of the Swiss population to radiation by diagnostic measures. This study is performed by the Department of Medical Radiation Physics of the University of Berne in collaboration with the Federal Health Bureau and the Swiss Institute for Health and Hospital Matters. In earlier studies the genetically significant exposure of the population and subsequently the median exposure of the red bone marrow had been investigated, whereas now the risk exposure to radiation of as far as possible practically all the risk-relevant organs will be studied. Prior to the initiation of the study, all results of earlier investigations during 1957, 1971 and 1978 were collected and analysed. It was found that the published results are hardly comparable, since the first study was based on individual X-ray examinations and the two subsequent studies on the localised X-ray examinations. To ensure that all data are now comparable, the results of the three studies were appropriately recalculated. Although certain assumptions had to be made that cannot be fully verified any more in view of the time that has elapsed, the collected results will provide a fairly reliable overview of the present-day state of knowledge in this particular field.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Global transcriptomic and proteomic profiling platforms have yielded important insights into the complex response to ionizing radiation (IR). Nonetheless, little is known about the ways in which small cellular metabolite concentrations change in response to IR. Here, a metabolomics approach using ultraperformance liquid chromatography coupled with electrospray time-of-flight mass spectrometry was used to profile, over time, the hydrophilic metabolome of TK6 cells exposed to IR doses ranging from 0.5 to 8.0 Gy. Multivariate data analysis of the positive ions revealed dose- and time-dependent clustering of the irradiated cells and identified certain constituents of the water-soluble metabolome as being significantly depleted as early as 1 h after IR. Tandem mass spectrometry was used to confirm metabolite identity. Many of the depleted metabolites are associated with oxidative stress and DNA repair pathways. Included are reduced glutathione, adenosine monophosphate, nicotinamide adenine dinucleotide, and spermine. Similar measurements were performed with a transformed fibroblast cell line, BJ, and it was found that a subset of the identified TK6 metabolites were effective in IR dose discrimination. The GEDI (Gene Expression Dynamics Inspector) algorithm, which is based on self-organizing maps, was used to visualize dynamic global changes in the TK6 metabolome that resulted from IR. It revealed dose-dependent clustering of ions sharing the same trends in concentration change across radiation doses. "Radiation metabolomics," the application of metabolomic analysis to the field of radiobiology, promises to increase our understanding of cellular responses to stressors such as radiation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Radiation metabolomics employing mass spectral technologies represents a plausible means of high-throughput minimally invasive radiation biodosimetry. A simplified metabolomics protocol is described that employs ubiquitous gas chromatography-mass spectrometry and open source software including random forests machine learning algorithm to uncover latent biomarkers of 3 Gy gamma radiation in rats. Urine was collected from six male Wistar rats and six sham-irradiated controls for 7 days, 4 prior to irradiation and 3 after irradiation. Water and food consumption, urine volume, body weight, and sodium, potassium, calcium, chloride, phosphate and urea excretion showed major effects from exposure to gamma radiation. The metabolomics protocol uncovered several urinary metabolites that were significantly up-regulated (glyoxylate, threonate, thymine, uracil, p-cresol) and down-regulated (citrate, 2-oxoglutarate, adipate, pimelate, suberate, azelaate) as a result of radiation exposure. Thymine and uracil were shown to derive largely from thymidine and 2'-deoxyuridine, which are known radiation biomarkers in the mouse. The radiation metabolomic phenotype in rats appeared to derive from oxidative stress and effects on kidney function. Gas chromatography-mass spectrometry is a promising platform on which to develop the field of radiation metabolomics further and to assist in the design of instrumentation for use in detecting biological consequences of environmental radiation release.