10 resultados para [NH4] exc

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Knowledge of the fate of deposited N in the possibly N-limited, highly biodiverse north Andean forests is important because of the possible effects of N inputs on plant performance and species composition. We analyzed concentrations and fluxes of NO3 N, NH4 +N and dissolved organic N (DON) in rainfall, throughfall, litter leachate, mineral soil solutions (0.150.30 m depths) and stream water in a montane forest in Ecuador during four consecutive quarters and used the natural 15N abundance in NO3 during the passage of rain water through the ecosystem and bulk 15N values in soil to detect N transformations. Depletion of 15N in NO3 and increased NO3 N fluxes during the passage through the canopy and the organic layer indicated nitrification in these compartments. During leaching from the organic layer to mineral soil and stream, NO3 concentrations progressively decreased and were enriched in 15N but did not reach the 15N values of solid phase organic matter (15N = 5.66.7). This suggested a combination of nitrification and denitrification in mineral soil. In the wettest quarter, the 15N value of NO3 in litter leachate was smaller (15N = 1.58) than in the other quarters (15N = 9.38 SE 0.46) probably because of reduced mineralization and associated fractionation against 15N. Nitrogen isotope fractionation of NO3 between litter leachate and stream water was smaller in the wettest period than in the other periods probably because of a higher rate of denitrification and continuous dilution by isotopically lighter NO3 N from throughfall and nitrification in the organic layer during the wettest period. The stable N isotope composition of NO3 gave valuable indications of N transformations during the passage of water through the forest ecosystem from rainfall to the stream.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this study, we present the development and the characterization of a generic platform for cell culture able to monitor extracellular ionic activities (K+, NH4+) for real-time monitoring of cell-based responses, such as necrosis, apoptosis, or differentiation. The platform for cell culture is equipped with an array of 16 silicon nitride micropipet-based ion-selective microelectrodes with a diameter of either 2 or 6 microm. This array is located at the bottom of a 200-microm-wide and 350-microm-deep microwell where the cells are cultured. The characterization of the ion-selective microelectrode arrays in different standard and physiological solutions is presented. Near-Nernstian slopes were obtained for potassium- (58.6 +/- 0.8 mV/pK, n = 15) and ammonium-selective microelectrodes (59.4 +/- 3.9 mV/pNH4, n = 13). The calibration curves were highly reproducible and showed an average drift of 4.4 +/- 2.3 mV/h (n = 10). Long-term behavior and response after immersion in physiological solutions are also presented. The lifetime of the sensors was found to be extremely long with a high recovery rate.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

New fluorinated hybrid solids [Mo2F2O5(tr2pr)] (1), [Co3(tr2pr)2(MoO4)2F2]7H2O (2), and [Co3(H2O)2(tr2pr)3(Mo8O26F2)]3H2O (3) (tr2pr = 1,3-bis(1,2,4-triazol-4-yl)propane) were prepared from the reaction systems consisting of Co(OAc)2/CoF2 and MoO3/(NH4)6Mo7O24, as CoII and MoVI sources, in water (2) or in aqueous HF (1, 3) employing mild hydrothermal conditions. The tr2pr ligand serves as a conformationally flexible tetradentate donor. In complex 1, the octahedrally coordinated Mo atoms are linked in the discrete corner-sharing {Mo2(2-O)F2O4N4} unit in which a pair of tr-heterocycles (tr = 1,2,4-triazole) is arranged in cis-positions opposite to molybdenyl oxygen atoms. The antianti conformation type of tr2pr facilitates the tight zigzag chain packing motif. The crystal structure of the mixed-anion complex salt 2 consists of trinuclear [Co3(3-MoO4)2(2-F)2] units self-assembling in CoII-undulating chains (CoCo 3.0709(15) and 3.3596(7) ), which are cross-linked by tr2pr in layers. In 3, containing condensed oxyfluoromolybdate species, linear centrosymmetric [Co3(2-tr)6]6+ SBUs are organized at distances of 10.7212.45 in an -Po-like network using bitopic tr-linkers. The octahedral {N6} and {N3O3} environments of the central and peripheral cobalt atoms, respectively, are filled by triazole N atoms, water molecules, and coordinating [Mo8O26F2]6 anions. Acting as a tetradentate O-donor, each difluorooctamolybdate anion anchors four [Co3(2-tr)6]6+ units through their peripheral Co-sites, which consequently leads to a novel type of a two-nodal 4,10-c net with the Schlafli symbol {32.43.5}{34.420.516.65}. The 2D and 3D coordination networks of 2 and 3, respectively, are characterized by significant overall antiferromagnetic exchange interactions (J/k) between the CoII spin centers on the order of 8 and 4 K. The [Mo8O26F2]6 anion is investigated in detail by quantum chemical calculations.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Water-bound nitrogen (N) cycling in temperate terrestrial ecosystems of the Northern Hemisphere is today mainly inorganic because of anthropogenic release of reactive N to the environment. In little-industrialized and remote areas, in contrast, a larger part of N cycling occurs as dissolved organic N (DON). In a north Andean tropical montane forest in Ecuador, the N cycle changed markedly during 19982010 along with increasing N deposition and reduced soil moisture. The DON concentrations and the fractional contribution of DON to total N significantly decreased in rainfall, throughfall, and soil solutions. This inorganic turn of the N cycle was most pronounced in rainfall and became weaker along the flow path of water through the system until it disappeared in stream water. Decreasing organic contributions to N cycling were caused not only by increasing inorganic N input but also by reduced DON production and/or enhanced DON decomposition. Accelerated DON decomposition might be attributable to less waterlogging and higher nutrient availability. Significantly increasing NO3-N concentrations and NO3-N/NH4-N concentration ratios in throughfall and litter leachate below the thick organic layers indicated increasing nitrification. In mineral soil solutions, in contrast, NH4-N concentrations increased and NO3-N/NH4-N concentration ratios decreased significantly, suggesting increasing net ammonification. Our results demonstrate that the remote tropical montane forests on the rim of the Amazon basin experienced a pronounced change of the N cycle in only one decade. This change likely parallels a similar change which followed industrialization in the temperate zone of the Northern Hemisphere more than a century ago.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

During two extended summer seasons in 2006 and 2007 we operated two battery driven versions of the Caltech active strand cloud water collector (MiniCASCC) at the Niesen mountain (2362 m a.s.l.) in the northern part of the Swiss Alps, and two devices at the Lgeren research tower (690 m a.s.l.) at the northern boundary of the Swiss Plateau. During these two field operation phases we gained weekly samples of fog water, where we analyzed the major anions and cations, and the isotope ratios of fog water (in form of 2H and 18O). Dominant ions in fog water at all sites were NH4+, NO3, and SO42 . Compared to precipitation, the enrichment factors in fog water were in the range 59 at the highest site, Niesen Kulm. We found considerably lower summertime ion loadings in fog water at the two Alpine sites than at lower elevations above the Swiss Plateau. The lowest ion concentrations were found at the Niesen Kulm site at 2300 m a.s.l., whereas the highest concentrations (a factor 7 compared to Niesen Kulm) were found in fog water at the Lgeren site. Occult nitrogen deposition was estimated from fog frequency and typical fog water flux rates. This pathway contributes 0.33.9 kg N ha 1 yr 1 to the total N deposition at the highest site on Niesen mountain, and 0.12.2 kg N ha 1 yr 1 at the lower site. These inputs are the reverse of ion concentrations measured in fog due to the 2.5 times higher frequency of fog occurrence at the mountain top (overall fog occurrence was 25% of the time) as compared to the lower Niesen Schwandegg site. Although fog water concentrations were on the lower range reported in earlier studies, fog water is likely to be an important N source for Northern Alpine ecosystems and might reach values up to 16% of the total N deposition and up to 75% of wet N deposition by precipitation.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Backgrounds and Aims Leaf functional traits have been used as a basis to categoize plants across a range of resource-use specialization, from those that conserve available resources to those that exploit them. However, the extent to which the leaf functional traits used to define the resource-use strategies are related to root traits and are good indicators of the ability of the roots to take up nitrogen (N) are poorly known. This is an important question because interspecific differences in N uptake have been proposed as one mechanism by which species coexistence may be determined. This study therefore investigated the relationships between functional traits and N uptake ability for grass species across a range of conservative to exploitative resource-use strategies.Methods Root uptake of NH4+ and NO3-, and leaf and root functional traits were measured for eight grass species sampled at three grassland sites across Europe, in France, Austria and the UK. Species were grown in hydroponics to determine functional traits and kinetic uptake parameters (Imax and Km) under standardized conditions.Key Results Species with high specific leaf area (SLA) and shoot N content, and low leaf and root dry matter content (LDMC and RDMC, respectively), which are traits associated with the exploitative syndrome, had higher uptake and affinity for both N forms. No trade-off was observed in uptake between the two forms of N, and all species expressed a higher preference for NH4+.Conclusions The results support the use of leaf traits, and especially SLA and LDMC, as indicators of the N uptake ability across a broad range of grass species. The difficulties associated with assessing root properties are also highlighted, as root traits were only weakly correlated with leaf traits, and only RDMC and, to a lesser extent, root N content were related to leaf traits.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The excitonic S1/S2 state splitting and the localization/delocalization of the S1 and S2 electronic states are investigated in the benzonitrile dimer (BN)2 and its 13C and d5 isotopomers by mass-resolved two-color resonant two-photon ionization spectroscopy in a supersonic jet, complemented by calculations. The doubly hydrogen-bonded (BN-h5)2 and (BN-d5)2 dimers are C2h symmetric with equivalent BN moieties. Only the S0 S2 electronic origin is observed, while the S0 S1 excitonic component is electric-dipole forbidden. A single 12C/13C or 5-fold h5/d5 isotopic substitution reduce the dimer symmetry to Cs, so that the heteroisotopic dimers (BN)2-(h5 h513C), (BN)2-(h5 d5), and (BN)2-(h5 h513C) exhibit both S0 S1 and S0 S2 origins. Isotope-dependent contributions iso to the excitonic splittings arise from the changes of the BN monomer zero-point vibrational energies; these range from iso(12C/13C) = 3.3 cm1 to iso(h5/d5) = 155.6 cm1. The analysis of the experimental S1/S2 splittings of six different isotopomeric dimers yields the S1/S2 exciton splitting exc = 2.1 0.1 cm1. Since iso(h5/d5) exc and iso(12C/13C) > exc, complete and near-complete exciton localization occurs upon 12C/13C and h5/d5 substitutions, respectively, as diagnosed by the relative S0 S1 and S0 S2 origin band intensities. The S1/S2 electronic energy gap of (BN)2 calculated by the spin-component scaled approximate second-order coupled-cluster (SCS-CC2) method is elcalc = 10 cm1. This electronic splitting is reduced by the vibronic quenching factor . The vibronically quenched exciton splitting elcalc = vibroncalc = 2.13 cm1 is in excellent agreement with the observed splitting exc = 2.1 cm1. The excitonic splittings can be converted to semiclassical exciton hopping times; the shortest hopping time is 8 ps for the homodimer (BN-h5)2, the longest is 600 ps for the (BN)2(h5 d5) heterodimer.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The present study was undertaken to identify changes in some important proteins involved in CO2 fixation (Rubisco, Rubisco activase (RA), Rubisco binding protein (RBP)), NH4+ assimilation (glutamine synthetase (GS) and glutamate synthase (GOGAT)), using immunoblotting, and in the antioxidative defense as a result of Cu or Mn excess in barley leaves (Hordeum vulgare L. cv. Obzor). Activities and isoenzyme patterns of superoxide dismutase (SOD), ascorbate peroxidase (APX), guaiacol peroxidase (GPX) and catalase (CAT), as well as the levels of ascorbate (ASC), non-protein sulfhydryl groups, hydrogen peroxide and oxidative damage to proteins were determined. Data were correlated to the accumulation of Cu or Mn in the leaves after 5 days supply of heavy metal (HM) excess in the nutrient solution. In the highest Cu excess (1500 M), Rubisco LS and SS were reduced considerably whereas under the highest Mn concentrations (18,300 M) only minor changes in Rubisco subunits were detected. The RBP was diminished under the highest concentrations of both Cu or Mn. The bands of RA changed differently comparing Cu and Mn toxicity. GS decreased and GOGAT was absent under the highest concentration of Cu. At Mn excess Fd-GOGAT diminished whereas GS was not apparently changed. The development of toxicity symptoms corresponded to an accumulation of Cu or Mn in the leaves and to a gradual increase in protein carbonylation, a lower SOD activity and elevated CAT and GPX activities. APX activity was diminished under Mn toxicity and was not changed under Cu excess. Generally, changes in the isoenzyme profiles were similar under both toxicities. An accumulation of H2O2 was observed only at Mn excess. Contrasting changes in the low-molecular antioxidants were detected when comparing both toxicities. Cu excess affected mainly the non-protein SH groups, while Mn influenced the ASC content. Oxidative stress under Cu or Mn toxicity was most probably the consequence of depletion in low-molecular antioxidants as a result of their involvement in detoxification processes and disbalance in antioxidative enzymes. The link between heavy metal accumulation in leaves, leading to different display of oxidative stress, and changes in individual chloroplast proteins is discussed in the article.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Atmospheric ammonia (NH3) exchange during a single growing season was measured over two grass/clover fields managed by cutting and treated with different rates of mineral nitrogen (N) fertilizer. The aim was to quantify the total NH3 exchange of the two systems in relation to their N budget, the latter was split into N derived from symbiotic fixation, from fertilization, and from the soil. The experimental site was located in an intensively managed agricultural area on the Swiss plateau. Two adjacent fields with mixtures of perennial ryegrass (Lolium perenne L.), cocks foot (Dactylis glomerata L.), white clover (Trifolium repens L.) and red clover (Trifolium pratense L.) were used. These were treated with either 80 or 160 kg N ha1 applied as NH4NO3 fertilizer in equal portions after each of four cuts. Continuous NH3 flux measurements were carried out by micrometeorological techniques. To determine the contribution of each species to the overall NH3 canopy compensation point, stomatal NH3 compensation points of the individual plant species were determined on the basis of NH4+ + NH3 (NHx) concentrations and pH in the apoplast. Symbiotic N2 fixation was measured by the 15N dilution method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using Arabidopsis, we analyzed the effect of omission of a nitrogen source and of the addition of different nitrogen-containing compounds on the extractable activity and the enzyme and mRNA accumulation of adenosine 5-phosphosulfate reductase (APR). During 72 h without a nitrogen source, the APR activity decreased to 70% and 50% of controls in leaves and roots, respectively, while cysteine (Cys) and glutathione contents were not affected. Northern and western analysis revealed that the decrease of APR activity was correlated with decreased mRNA and enzyme levels. The reduced APR activity in roots could be fully restored within 24 h by the addition of 4 mM each of NO3 , NH4 +, or glutamine (Gln), or 1 mM O-acetylserine (OAS). 35SO4 2 feeding showed that after addition of NH4 +, Gln, or OAS to nitrogen-starved plants, incorporation of 35S into proteins significantly increased in roots; however, glutathione and Cys labeling was higher only with Gln and OAS or with OAS alone, respectively. OAS strongly increased mRNA levels of all three APR isoforms in roots and also those of sulfite reductase, Cys synthase, and serine acetyltransferase. Our data demonstrate that sulfate reduction is regulated by nitrogen nutrition at the transcriptional level and that OAS plays a major role in this regulation.