26 resultados para [JEL:C19] Mathematical and Quantitative Methods - Econometric and Statistical Methods: General - Other
em BORIS: Bern Open Repository and Information System - Berna - Suiça
Resumo:
Computer games for a serious purpose - so called serious games can provide additional information for the screening and diagnosis of cognitive impairment. Moreover, they have the advantage of being an ecological tool by involving daily living tasks. However, there is a need for better comprehensive designs regarding the acceptance of this technology, as the target population is older adults that are not used to interact with novel technologies. Moreover given the complexity of the diagnosis and the need for precise assessment, an evaluation of the best approach to analyze the performance data is required. The present study examines the usability of a new screening tool and proposes several new outlines for data analysis.
Resumo:
A method for quantifying nociceptive withdrawal reflex receptive fields in human volunteers and patients is described. The reflex receptive field (RRF) for a specific muscle denotes the cutaneous area from which a muscle contraction can be evoked by a nociceptive stimulus. The method is based on random stimulations presented in a blinded sequence to 10 stimulation sites. The sensitivity map is derived by interpolating the reflex responses evoked from the 10 sites. A set of features describing the size and location of the RRF is presented based on statistical analysis of the sensitivity map within every subject. The features include RRF area, volume, peak location and center of gravity. The method was applied to 30 healthy volunteers. Electrical stimuli were applied to the sole of the foot evoking reflexes in the ankle flexor tibialis anterior. The RRF area covered a fraction of 0.57+/-0.06 (S.E.M.) of the foot and was located on the medial, distal part of the sole of the foot. An intramuscular injection into flexor digitorum brevis of capsaicin was performed in one spinal cord injured subject to attempt modulation of the reflex receptive field. The RRF area, RRF volume and location of the peak reflex response appear to be the most sensitive measures for detecting modulation of spinal nociceptive processing. This new method has important potential applications for exploring aspects of central plasticity in volunteers and patients. It may be utilized as a new diagnostic tool for central hypersensitivity and quantification of therapeutic interventions.
Resumo:
Enteric Escherichia coli infections are a highly relevant cause of disease and death in young pigs. Breeding genetically resistant pigs is an economical and sustainable method of prevention. Resistant pigs are protected against colonization of the intestine through the absence of receptors for the bacterial fimbriae, which mediate adhesion to the intestinal surface. The present work aimed at elucidation of the mode of inheritance of the F4ad receptor which according to former investigations appeared quite confusing. Intestines of 489 pigs of an experimental herd were examined by a microscopic adhesion test modified in such a manner that four small intestinal sites instead of one were tested for adhesion of the fimbrial variant F4ad. Segregation analysis revealed that the mixed inheritance model explained our data best. The heritability of the F4ad phenotype was estimated to be 0.7±0.1. There are no relations to the strong receptors for variants F4ab and F4ac. Targeted matings allowed the discrimination between two F4ad receptors, that is, a fully adhesive receptor (F4adRFA) expressed on all enterocytes and at all small intestinal sites, and a partially adhesive receptor (F4adRPA) variably expressed at different sites and often leading to partial bacterial adhesion. In pigs with both F4ad receptors, the F4adRPA receptor is masked by the F4adRFA. The hypothesis that F4adRFA must be encoded by at least two complementary or epistatic dominant genes is supported by the Hardy-Weinberg equilibrium statistics. The F4adRPA receptor is inherited as a monogenetic dominant trait. A comparable partially adhesive receptor for variant F4ab (F4abRPA) was also observed but the limited data did not allow a prediction of the mode of inheritance. Pigs were therefore classified into one of eight receptor phenotypes: A1 (F4abRFA/F4acR+/F4adRFA); A2 (F4abRFA/F4acR+/F4adRPA); B (F4abRFA/F4acR+/F4adR-); C1 (F4abRPA/F4acR-/F4adRFA); C2 (F4abRPA/F4acR-/F4adRPA); D1 (F4abR-/F4acR-/F4adRFA); D2 (F4abR-/F4acR-/F4adRPA); E (F4abR-/F4acR-/F4adR-).
Resumo:
Finite element (FE) analysis is an important computational tool in biomechanics. However, its adoption into clinical practice has been hampered by its computational complexity and required high technical competences for clinicians. In this paper we propose a supervised learning approach to predict the outcome of the FE analysis. We demonstrate our approach on clinical CT and X-ray femur images for FE predictions ( FEP), with features extracted, respectively, from a statistical shape model and from 2D-based morphometric and density information. Using leave-one-out experiments and sensitivity analysis, comprising a database of 89 clinical cases, our method is capable of predicting the distribution of stress values for a walking loading condition with an average correlation coefficient of 0.984 and 0.976, for CT and X-ray images, respectively. These findings suggest that supervised learning approaches have the potential to leverage the clinical integration of mechanical simulations for the treatment of musculoskeletal conditions.
Resumo:
Erosion of dentine causes mineral dissolution, while the organic compounds remain at the surface. Therefore, a determination of tissue loss is complicated. Established quantitative methods for the evaluation of enamel have also been used for dentine, but the suitability of these techniques in this field has not been systematically determined. Therefore, this study aimed to compare longitudinal microradiography (LMR), contacting (cPM) and non-contacting profilometry (ncPM), and analysis of dissolved calcium (Ca analysis) in the erosion solution. Results are discussed in the light of the histology of dentine erosion. Erosion was performed with 0.05 M citric acid (pH 2.5) for 30, 60, 90 or 120 min, and erosive loss was determined by each method. LMR, cPM and ncPM were performed before and after collagenase digestion of the demineralised organic surface layer, with an emphasis on moisture control. Scanning electron microscopy was performed on randomly selected specimens. All measurements were converted into micrometres. Profilometry was not suitable to adequately quantify mineral loss prior to collagenase digestion. After 120 min of erosion, values of 5.4 +/- 1.9 microm (ncPM) and 27.8 +/- 4.6 microm (cPM) were determined. Ca analysis revealed a mineral loss of 55.4 +/- 11.5 microm. The values for profilometry after matrix digestion were 43.0 +/- 5.5 microm (ncPM) and 46.9 +/- 6.2 (cPM). Relative and proportional biases were detected for all method comparisons. The mineral loss values were below the detection limit for LMR. The study revealed gross differences between methods, particularly when demineralised organic surface tissue was present. These results indicate that the choice of method is critical and depends on the parameter under study.
Resumo:
This study addresses the cellular uptake and intracellular trafficking of 15-nm gold nanoparticles (NPs), either plain (i.e., stabilized with citrate) or coated with polyethylene glycol (PEG), exposed to human alveolar epithelial cells (A549) at the air-liquid interface for 1, 4, and 24 h. Quantitative analysis by stereology on transmission electron microscopy images reveals a significant, nonrandom intracellular distribution for both NP types. No particles are observed in the nucleus, mitochondria, endoplasmic reticulum, or golgi. The cytosol is not a preferred cellular compartment for both NP types, although significantly more PEG-coated than citrate-stabilized NPs are present there. The preferred particle localizations are vesicles of different sizes (<150, 150-1000, >1000 nm). This is observed for both NP types and indicates a predominant uptake by endocytosis. Subsequent inhibition of caveolin- and clathrin-mediated endocytosis by methyl-beta-cyclodextrin (MbetaCD) results in a significant reduction of intracellular NPs. The inhibition, however, is more pronounced for PEG-coated than citrate-stabilized NPs. The latter are mostly found in larger vesicles; therefore, they are potentially taken up by macropinocytosis, which is not inhibited by MbetaCD. With prolonged exposure times, both NPs are preferentially localized in larger-sized intracellular vesicles such as lysosomes, thus indicating intracellular particle trafficking. This quantitative evaluation reveals that NP surface coatings modulate endocytotic uptake pathways and cellular NP trafficking. Other nonendocytotic entry mechanisms are found to be involved as well, as indicated by localization of a minority of PEG-coated NPs in the cytosol.