2 resultados para (15)N-enriched NO

em BORIS: Bern Open Repository and Information System - Berna - Suiça


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Acute or even hyperacute humoral graft rejection, mediated by classical pathway complement activation, occurs in allo- and xenotransplantation due to preformed anti-graft antibodies. Intravenous immunoglobulin (IVIg) preparations can prevent complement-mediated tissue injury and delay hyperacute xenograft rejection. It is known that IgM-enriched IVIg (IVIgM) has a higher capacity to block complement than IVIgG. Different IVIgs were therefore tested for specificity of complement inhibition and effect on anti-bacterial activity of human serum. IVIgM-I (Pentaglobin), 12% IgM), IVIgM-II (IgM-fraction of IVIgM-I, 60% IgM), and three different IVIgG (all >95% IgG) were used. The known complement inhibitor dextran sulfate was used as control. Hemolytic assays were performed to analyze pathway-specificity of complement inhibition. Effects of IVIg on complement deposition on pig cells and Escherichia coli were assessed by flow cytometry and cytotoxicity as well as bactericidal assays. Complement inhibition by IVIgM was specific for the classical pathway, with IC50 values of 0.8 mg/ml for IVIgM-II and 1.7 mg/ml for IVIgM-I in the CH50 assay. Only minimal inhibition of the lectin pathway was seen with IVIgM-II (IC50 15.5 mg/ml); no alternative pathway inhibition was observed. IVIgG did not inhibit complement in any hemolytic assay. Classical pathway complement inhibition by IVIgM was confirmed in an in vitro xenotransplantation model with PK15 cells. In contrast, IVIgM did not inhibit (mainly alternative pathway mediated) killing of E. coli by human serum. In conclusion, IgM-enriched IVIg is a specific inhibitor of the classical complement pathway, leaving the alternative pathway intact, which is an important natural anti-bacterial defense, especially for immunosuppressed patients.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

BACKGROUND Gastrointestinal (GI) complications often delay recovery after radical cystectomy with urinary diversion. The authors investigated if perioperative administration of a potassium-enriched, chloride-depleted 5% glucose solution (G5K) accelerates recovery of GI function. METHODS This randomized, parallel-group, single-center double-blind trial included 44 consecutive patients undergoing radical cystectomy and pelvic lymph node dissection with urinary diversion. Patients were randomized to receive either a G5K (G5K group) solution or a Ringer's maleate solution (control group). Fluid management aimed for a zero fluid balance. Primary endpoint was time to first defecation. Secondary endpoints were time to normal GI function, need for electrolyte substitution, and renal dysfunction. RESULTS Time to first defecation was not significantly different between groups (G5K group, 93 h [19 to 168 h] and control group, 120 h [43 to 241 h]); estimator of the group difference, -16 (95% CI, -38 to 6); P = 0.173. Return of normal GI function occurred faster in the G5K group than in the control group (median, 138 h [range, 54 to 262 h] vs. 169 h [108 to 318 h]); estimator of the group difference, -38 (95% CI, -74 to -12); P = 0.004. Potassium and magnesium were less frequently substituted in the G5K group (13.6 vs. 54.5% [P = 0.010] and 18.2 vs. 77.3% [P < 0.001]), respectively. The incidence of renal dysfunction (Risk, Injury, Failure, Loss and End-stage kidney disease stage "risk") at discharge was 9.1% in the G5K group and 4.5% in the control group; P = 1.000. CONCLUSIONS Perioperative administration of a G5K did not enhance first defecation, but may accelerate recovery of normal GI function, and reduces potassium and magnesium substitution after radical cystectomy and urinary diversion.