141 resultados para vascular endothelial growth inhibitor


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The receptor tyrosine kinase Tie2, and its activating ligand Angiopoietin-1 (Ang1), are required for vascular remodelling and vessel integrity, whereas Ang2 may counteract these functions. However, it is not known how Tie2 transduces these different signals. Here, we show that Ang1 induces unique Tie2 complexes in mobile and confluent endothelial cells. Matrix-bound Ang1 induced cell adhesion, motility and Tie2 activation in cell-matrix contacts that became translocated to the trailing edge in migrating endothelial cells. In contrast, in contacting cells Ang1 induced Tie2 translocation to cell-cell contacts and the formation of homotypic Tie2-Tie2 trans-associated complexes that included the vascular endothelial phosphotyrosine phosphatase, leading to inhibition of paracellular permeability. Distinct signalling proteins were preferentially activated by Tie2 in the cell-matrix and cell-cell contacts, where Ang2 inhibited Ang1-induced Tie2 activation. This novel type of cellular microenvironment-dependent receptor tyrosine kinase activation may explain some of the effects of angiopoietins in angiogenesis and vessel stabilization.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

T-cadherin is gaining recognition as a determinant for the development of incipient invasive squamous cell carcinoma (SCC). However, effects of T-cadherin expression on the metastatic potential of SCC have not been studied. Here, using a murine model of experimental metastasis following tail vein injection of A431 SCC cells we report that loss of T-cadherin increased both the incidence and rate of appearance of lung metastases. T-cadherin-silenced SCC metastases were highly disordered with evidence of single cell dissemination away from main foci whereas SCC metastases overexpressing T-cadherin developed as compact, tightly organised sheets. SCC cell adhesion to vascular endothelial cells (EC) in culture was increased for T-cadherin-silenced SCC and decreased for T-cadherin-overexpressing SCC. Confocal microscopy showed that T-cadherin-silenced SCC adherent on EC display an elongated morphology with long thin extensions and a high degree of intercalation within the EC monolayer, whereas SCC overexpressing T-cadherin formed poorly-spread multicellular aggregates that remain on the outer surface of the EC monolayer. T-cadherin-deficient SCC or human keratinocyte cells exhibited increased transendothelial migration in vitro which could be attenuated in the presence of EGFR inhibitor gefitinib. Our data suggest that loss of T-cadherin can increase metastatic potential and aggressiveness of SCC, possibly due to facilitating arrest and extravasation through the vascular wall and/or more efficient establishment of metastases in the new microenvironment.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Memo is a conserved protein that was identified as an essential mediator of tumor cell motility induced by receptor tyrosine kinase activation. Here we show that Memo null mouse embryonic fibroblasts (MEFs) are impaired in PDGF-induced migration and this is due to a defect in sphingosine-1-phosphate (S1P) signaling. S1P is a bioactive phospholipid produced in response to multiple stimuli, which regulates many cellular processes. S1P is secreted to the extracellular milieu where it exerts its function by binding a family of G-protein coupled receptors (S1PRs), causing their activation in an autocrine or paracrine manner. The process, termed cell-autonomous S1PR signaling, plays a role in survival and migration. Indeed, PDGF uses cell-autonomous S1PR signaling to promote cell migration; we show here that this S1P pathway requires Memo. Using vascular endothelial cells (HUVECs) with Memo knock-down we show that their survival in conditions of serum-starvation is impaired. Furthermore, Memo loss in HUVECs causes a reduction of junctional VE-cadherin and an increase in sprout formation. Each of these phenotypes is rescued by S1P or S1P agonist addition, showing that Memo also plays an important role in cell-autonomous S1PR signaling in endothelial cells. We also produced conventional and endothelial cell-specific conditional Memo knock-out mouse strains and show that Memo is essential for embryonic development. Starting at E13.5 embryos of both strains display bleeding and other vascular problems, some of the phenotypes that have been described in mouse strains lacking S1PRs. The essential role of Memo in embryonic vascular development may be due in part to alterations in S1P signaling. Taken together our results show that Memo has a novel role in the S1P pathway and that Memo is needed to promote cell-autonomous S1PR activation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

BACKGROUND Several biologically plausible mechanisms have been proposed to mediate the association between periodontitis and atherosclerotic vascular disease (AVD), including adverse effects on vascular endothelial function. Circulating endothelial progenitor cells (cEPCs) are known to contribute to vascular repair, but limited data are available regarding the relationship between cEPC levels and periodontitis. The aims of this cross-sectional study are to investigate the levels of hemangioblastic and monocytic cEPCs in patients with periodontitis and periodontally healthy controls and to associate cEPC levels with the extent and severity of periodontitis. METHODS A total of 112 individuals (56 patients with periodontitis and 56 periodontally healthy controls, aged 26 to 65 years; mean age: 43 years) were enrolled. All participants underwent a full-mouth periodontal examination and provided a blood sample. Hemangioblastic cEPCs were assessed using flow cytometry, and monocytic cEPCs were identified using immunohistochemistry in cultured peripheral blood mononuclear cells. cEPC levels were analyzed in the entire sample, as well as in a subset of 50 pairs of patients with periodontitis/periodontally healthy controls, matched with respect to age, sex, and menstrual cycle. RESULTS Levels of hemangioblastic cEPCs were approximately 2.3-fold higher in patients with periodontitis than periodontally healthy controls, after adjustments for age, sex, physical activity, systolic blood pressure, and body mass index (P = 0.001). A non-significant trend for higher levels of monocytic cEPCs in periodontitis was also observed. The levels of hemangioblastic cEPCs were positively associated with the extent of bleeding on probing, probing depth, and clinical attachment loss. Hemangioblastic and monocytic cEPC levels were not correlated (Spearman correlation coefficient 0.03, P = 0.77), suggesting that they represent independent populations of progenitor cells. CONCLUSION These findings further support the notion that oral infections have extraoral effects and document that periodontitis is associated with a mobilization of EPCs from the bone marrow, apparently in response to systemic inflammation and endothelial injury.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Barrier characteristics of brain endothelial cells forming the blood-brain barrier (BBB) are tightly regulated by cellular and acellular components of the neurovascular unit. During embryogenesis, the accumulation of the heparan sulfate proteoglycan agrin in the basement membranes ensheathing brain vessels correlates with BBB maturation. In contrast, loss of agrin deposition in the vasculature of brain tumors is accompanied by the loss of endothelial junctional proteins. We therefore wondered whether agrin had a direct effect on the barrier characteristics of brain endothelial cells. Agrin increased junctional localization of vascular endothelial (VE)-cadherin, β-catenin, and zonula occludens-1 (ZO-1) but not of claudin-5 and occludin in the brain endothelioma cell line bEnd5 without affecting the expression levels of these proteins. This was accompanied by an agrin-induced reduction of the paracellular permeability of bEnd5 monolayers. In vivo, the lack of agrin also led to reduced junctional localization of VE-cadherin in brain microvascular endothelial cells. Taken together, our data support the notion that agrin contributes to barrier characteristics of brain endothelium by stabilizing the adherens junction proteins VE-cadherin and β-catenin and the junctional protein ZO-1 to brain endothelial junctions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

AIMS Children conceived by assisted reproductive technology (ART) display vascular dysfunction. Its underlying mechanism, potential reversibility and long-term consequences for cardiovascular risk are unknown. In mice, ART induces arterial hypertension and shortens the life span. These problems are related to decreased vascular endothelial nitric oxide synthase (eNOS) expression and nitric oxide (NO) synthesis. The aim of this study was to determine whether ART-induced vascular dysfunction in humans is related to a similar mechanism and potentially reversible. To this end we tested whether antioxidants improve endothelial function by scavenging free radicals and increasing NO bioavailability. METHODS AND RESULTS In this prospective double-blind placebo controlled study in 21 ART and 21 control children we assessed the effects of a four-week oral supplementation with antioxidant vitamins C (1 g) and E (400 IU) or placebo (allocation ratio 2:1) on flow-mediated vasodilation (FMD) of the brachial artery and pulmonary artery pressure (echocardiography) during high-altitude exposure (3454 m), a manoeuver known to facilitate the detection of pulmonary vascular dysfunction and to decrease NO bioavailability by stimulating oxidative stress. Antioxidant supplementation significantly increased plasma NO measured by ozone-based chemiluminescence (from 21.7 ± 7.9 to 26.9 ± 7.6 µM, p = 0.04) and FMD (from 7.0 ± 2.1 to 8.7 ± 2.0%, p = 0.004) and attenuated altitude-induced pulmonary hypertension (from 33 ± 8 to 28 ± 6 mm Hg, p = 0.028) in ART children, whereas it had no detectable effect in control children. CONCLUSIONS Antioxidant administration to ART children improved NO bioavailability and vascular responsiveness in the systemic and pulmonary circulation. Collectively, these findings indicate that in young individuals ART-induced vascular dysfunction is subject to redox regulation and reversible.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pathophysiological disturbances during subarachnoid hemorrhage (SAH) and within the first few days thereafter are responsible for significant brain damage. Early brain injury (EBI) after SAH has become the focus of current research activities. The purpose of the present study was to evaluate whether a novel rabbit SAH model provokes EBI by means of neuronal degeneration, brain tissue death, and apoptosis in cerebral vascular endothelial cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The junctional adhesion molecule (JAM)-C is a widely expressed adhesion molecule regulating cell adhesion, cell polarity and inflammation. JAM-C expression and function in the central nervous system (CNS) has been poorly characterized to date. Here we show that JAM-C(-/-) mice backcrossed onto the C57BL/6 genetic background developed a severe hydrocephalus. An in depth immunohistochemical study revealed specific immunostaining for JAM-C in vascular endothelial cells in the CNS parenchyma, the meninges and in the choroid plexus of healthy C57BL/6 mice. Additional JAM-C immunostaining was detected on ependymal cells lining the ventricles and on choroid plexus epithelial cells. Despite the presence of hemorrhages in the brains of JAM-C(-/-) mice, our study demonstrates that development of the hydrocephalus was not due to a vascular function of JAM-C as endothelial re-expression of JAM-C failed to rescue the hydrocephalus phenotype of JAM-C(-/-) C57BL/6 mice. Evaluation of cerebrospinal fluid (CSF) circulation within the ventricular system of JAM-C(-/-) mice excluded occlusion of the cerebral aqueduct as the cause of hydrocephalus development but showed the acquisition of a block or reduction of CSF drainage from the lateral to the 3(rd) ventricle in JAM-C(-/-) C57BL/6 mice. Taken together, our study suggests that JAM-C(-/-) C57BL/6 mice model the important role for JAM-C in brain development and CSF homeostasis as recently observed in humans with a loss-of-function mutation in JAM-C.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Fabry's disease corresponds to an inherited disorder transmitted by an X-linked recessive gene. It generates a dysfunction of glycosphingolipid metabolism due to an enzymatic deficiency of alpha-galactosidase activity, resulting in glycosphingolipid deposits in all areas of the body. The clinical (heart, kidney, and central nervous system) manifestations are more severe in hemizygous boys than in heterozygous girls. They appear during childhood or adolescence: acroparesthesia, joint pain, angiokeratoma, corneal dystrophy, hypohydrosis or anhydrosis, and renal failure. The otoneurologic symptoms consist of hearing fluctuation, progressive unilateral or bilateral hearing loss, and episodes of vertigo or dizziness. Otoneurologic findings in 12 of 26 members of the same family are presented: the mother and 9 of her 12 children, as well as 2 of her 14 grandchildren: 4 healthy persons, 4 heterozygous female carriers, and 4 hemizygous male patients. Three of the male patients had fluctuation of hearing, sudden hearing loss, and episodes of vertigo and dizziness. The otoneurologic examinations showed a bilateral cochleovestibular deficit (n = 1), a right cochleovestibular deficit (n = 1), and a bilateral hearing loss combined with a right vestibular deficit (n = 1). Histopathologic evidence of glycosphingolipid accumulation in vascular endothelial and ganglion cells, as well as atrophy of the stria and spiral ligament, might explain the otoneurologic symptoms and findings.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Studies of high-altitude populations, and in particular of maladapted subgroups, may provide important insight into underlying mechanisms involved in the pathogenesis of hypoxemia-related disease states in general. Over the past decade, studies involving short-term hypoxic exposure have greatly advanced our knowledge regarding underlying mechanisms and predisposing events of hypoxic pulmonary hypertension. Studies in high altitude pulmonary edema (HAPE)-prone subjects, a condition characterized by exaggerated hypoxic pulmonary hypertension, have provided evidence for the central role of pulmonary vascular endothelial and respiratory epithelial nitric oxide (NO) for pulmonary artery pressure homeostasis. More recently, it has been shown that pathological events during the perinatal period (possibly by impairing pulmonary NO synthesis), predispose to exaggerated hypoxic pulmonary hypertension later in life. In an attempt to translate some of this new knowledge to the understanding of underlying mechanisms and predisposing events of chronic hypoxic pulmonary hypertension, we have recently initiated a series of studies among high-risk subpopulations (experiments of nature) of high-altitude dwellers. These studies have allowed to identify novel risk factors and underlying mechanisms that may predispose to sustained hypoxic pulmonary hypertension. The aim of this article is to briefly review this new data, and demonstrate that insufficient NO synthesis/bioavailability, possibly related in part to augmented oxidative stress, may represent an important underlying mechanism predisposing to pulmonary hypertension in high-altitude dwellers.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial (VE)-cadherin is an essential protein of adherens junctions of endothelial cells and plays a pivotal role in vascular homeostasis. Mammalian target of rapamycin complex 2 (mTORC2) deficient mice display defects in fetal vascular development. Blocking mTOR or the upstream kinase phosphoinositide 3-kinase (PI3K) led to a dose-dependently decrease of the VE-cadherin mRNA and protein expression. Immunofluorescent staining showed a strongly decreased expression of VE-cadherin at the interface of human umbilical endothelial cells (HUVECs) followed by intercellular gap formation. Herewith, we demonstrated that the expression of VE-cadherin is dependent on mTOR and PI3K signaling.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Vascular endothelial protein tyrosine phosphatase (VE-PTP) is an endothelial-specific receptor-type tyrosine phosphatase that associates with Tie-2 and VE-cadherin. VE-PTP gene disruption leads to embryonic lethality, vascular remodeling defects, and enlargement of vascular structures in extraembryonic tissues. We show here that antibodies against the extracellular part of VE-PTP mimic the effects of VE-PTP gene disruption exemplified by vessel enlargement in allantois explants. These effects require the presence of the angiopoietin receptor Tie-2. Analyzing the mechanism we found that anti-VE-PTP antibodies trigger endocytosis and selectively affect Tie-2-associated, but not VE-cadherin-associated VE-PTP. Dissociation of VE-PTP triggers the activation of Tie-2, leading to enhanced endothelial cell proliferation and enlargement of vascular structures through activation of Erk1/2. Importantly, the antibody effect on vessel enlargement is also observed in newborn mice. We conclude that VE-PTP is required to balance Tie-2 activity and endothelial cell proliferation, thereby controlling blood vessel development and vessel size.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

PURPOSE: To compare tunnelled scleral intravitreal injection with straight scleral intravitreal injection concerning short-term intraocular pressure (IOP) changes, occurrence and amount of vitreous reflux, and patient discomfort. METHODS: Sixty patients were randomly allocated to two groups (tunnelled intravitreal injection and straight intravitreal injection). IOP was measured before and directly (<1 minute) after the injection of 0.05 mL of an antivascular endothelial growth factor agent and then every 5 minutes until IOP was <30 mmHg. Occurrence and amount of vitreous reflux were recorded. Patient discomfort during injection was assessed with a Wong-Baker faces pain rating scale. RESULTS: IOP (mmHg +/- SD) increased significantly directly after injection to 35.97 +/- 8.13 (tunnelled intravitreal injection) and 30.19 +/- 12.14 (straight intravitreal injection). These pressure spikes differed significantly between both groups (P = 0.01, mean difference: -7.11). Five minutes after injection, there was no significant difference in IOP increase between the groups. All IOP measurements were <30 mmHg after 15 minutes. Occurrence and amount of vitreous reflux were significantly higher with straight intravitreal injection. There was no significant difference in Wong-Baker faces pain rating scale score between both groups. CONCLUSION: Tunnelled intravitreal injection seems to be the technique of choice for low-volume intravitreal injection (0.05 mL). There is neither a difference in patient discomfort nor a difference in IOP increase 5 minutes after injection between both groups. Significantly less vitreous reflux with tunnelled intravitreal injection should lead to less postinjectional drug loss.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pulmonary vasoconstriction represents a physiological adaptive mechanism to high altitude. If exaggerated, however, it is associated with important morbidity and mortality. Recent mechanistic studies using short-term acute high altitude exposure have provided insight into the importance of defective vascular endothelial and respiratory epithelial nitric oxide (NO) synthesis, increased endothelin-1 bioavailability, and overactivation of the sympathetic nervous system in causing exaggerated hypoxic pulmonary hypertension in humans. Based on these studies, drugs that increase NO bioavailability, attenuate endothelin-1 induced pulmonary vasoconstriction, or prevent exaggerated sympathetic activation have been shown to be useful for the treatment/prevention of exaggerated pulmonary hypertension during acute short-term high altitude exposure. The mechanisms underpinning chronic pulmonary hypertension in high altitude dwellers are less well understood, but recent evidence suggests that they differ in some aspects from those involved in short-term adaptation to high altitude. These differences have consequences for the choice of the treatment for chronic pulmonary hypertension at high altitude. Finally, recent data indicate that fetal programming of pulmonary vascular dysfunction in offspring of preeclampsia and children generated by assisted reproductive technologies represents a novel and frequent cause of pulmonary hypertension at high altitude. In animal models of fetal programming of hypoxic pulmonary hypertension, epigenetic mechanisms play a role, and targeting of these mechanisms with drugs lowers pulmonary artery pressure. If epigenetic mechanisms also are operational in the fetal programming of pulmonary vascular dysfunction in humans, such drugs may become novel tools for the treatment of hypoxic pulmonary hypertension.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the contribution of estrogen receptors (ERs) alpha and beta for epicardial coronary artery function, vascular NO bioactivity, and superoxide (O(2)(-)) formation. Porcine coronary rings were suspended in organ chambers and precontracted with prostaglandin F(2alpha) to determine direct effects of the selective ER agonists 4,4',4''-(4-propyl-[(1)H]pyrazole-1,3,5-triyl)tris-phenol (PPT) or 2,3-bis(4-hydroxyphenyl)-propionitrile (DPN) or the nonselective ER agonist 17beta-estradiol. Indirect effects on contractility to U46619 and relaxation to bradykinin were assessed and effects on NO, nitrite, and O(2)(-) formation were measured in cultured cells. Within 5 minutes, selective ERalpha activation by PPT, but not 17beta-estradiol or the ERbeta agonist DPN, caused rapid, NO-dependent, and endothelium-dependent relaxation (49+/-5%; P<0.001 versus ethanol). PPT also caused sustained endothelium- and NO-independent vasodilation similar to 17beta-estradiol after 60 minutes (72+/-3%; P<0.001 versus ethanol). DPN induced endothelium-dependent NO-independent relaxation via endothelium-dependent hyperpolarization (40+/-4%; P<0.01 versus ethanol). 17beta-Estradiol and PPT, but not DPN, attenuated the responses to U46619 and bradykinin. All of the ER agonists increased NO and nitrite formation in vascular endothelial but not smooth muscle cells and attenuated vascular smooth muscle cell O(2)(-) formation (P<0.001). ERalpha activation had the most potent effects on both nitrite formation and inhibiting O(2)(-) (P<0.05). These data demonstrate novel and differential mechanisms by which ERalpha and ERbeta activation control coronary artery vasoreactivity in males and females and regulate vascular NO and O(2)(-) formation. The findings indicate that coronary vascular effects of sex hormones differ with regard to affinity to ERalpha and ERbeta, which will contribute to beneficial and adverse effects of hormone replacement therapy.