184 resultados para spinal
Resumo:
An in vitro biomechanical investigation in the human lumbar spine focuses on the functional significance of vertebral bone density and intervertebral disc degenerations.
Resumo:
Pedicle hooks which are used as an anchorage for posterior spinal instrumentation may be subjected to considerable three-dimensional forces. In order to achieve stronger attachment to the implantation site, hooks using screws for additional fixation have been developed. The failure loads and mechanisms of three such devices have been experimentally determined on human thoracic vertebrae: the Universal Spine System (USS) pedicle hook with one screw, a prototype pedicle hook with two screws and the Cotrel-Dubousset (CD) pedicle hook with screw. The USS hooks use 3.2-mm self-tapping fixation screws which pass into the pedicle, whereas the CD hook is stabilised with a 3-mm set screw pressing against the superior part of the facet joint. A clinically established 5-mm pedicle screw was tested for comparison. A matched pair experimental design was implemented to evaluate these implants in constrained (series I) and rotationally unconstrained (series II) posterior pull-out tests. In the constrained tests the pedicle screw was the strongest implant, with an average pull-out force of 1650 N (SD 623 N). The prototype hook was comparable, with an average failure load of 1530 N (SD 414 N). The average pull-out force of the USS hook with one screw was 910 N (SD 243 N), not significantly different to the CD hook's average failure load of 740 N (SD 189 N). The result of the unconstrained tests were similar, with the prototype hook being the strongest device (average 1617 N, SD 652 N). However, in this series the difference in failure load between the USS hook with one screw and the CD hook was significant. Average failure loads of 792 N (SD 184 N) for the USS hook and 464 N (SD 279 N) for the CD hook were measured. A pedicular fracture in the plane of the fixation screw was the most common failure mode for USS hooks.(ABSTRACT TRUNCATED AT 250 WORDS)
Resumo:
OBJECTIVES: (1) To assess spinal cord blood flow (SCBF) during surgical treatment of disk extrusion in dogs and (2) to investigate associations between SCBF, clinical signs, presurgical MRI images, and 24-hour surgical outcome. STUDY DESIGN: Cohort study. ANIMALS: Chondrodystrophic dogs with thoracolumbar disk extrusion (n=12). METHODS: Diagnosis was based on clinical signs and MRI findings, and confirmed at surgery. Regional SCBF was measured intraoperatively by laser-Doppler flowmetry before, immediately after surgical spinal cord decompression, and after 15 minutes of lavaging the lesion. Care was taken to ensure a standardized surgical procedure to minimize factors that could influence measurement readings. RESULTS: A significant increase in intraoperative SCBF was found in all dogs (Wilcoxon's signed-rank test; P=.05) immediately after spinal cord decompression and after 15 minutes. Changes in SCBF were not associated with duration of clinical signs; initial or 24-hour neurologic status; or degree of spinal cord compression assessed by MRI. CONCLUSION: SCBF increases immediately after spinal cord decompression in dogs with disk herniation; however, increased SCBF was not associated with a diminished 24-hour neurologic status. CLINICAL RELEVANCE: An increase in SCBF does not appear to be either associated with the degree of spinal cord compression or of a magnitude sufficient to outweigh the benefit of surgical decompression by resulting in clinically relevant changes in 24-hour outcome.
Resumo:
Acute administration of a mononclonal antibody (mAb) raised against the CD11d subunit of the leukocyte CD11d/CD18 integrin after spinal cord injury (SCI) in the rat greatly improves neurological outcomes. We have profiled gene expression in anti-CD11d and isotyped-matched control mAb-treated rats after SCI. Microarray analysis demonstrated reduced expression of pro-inflammatory cytokines and increased expression of inflammatory mediators that promote wound healing and the expression of scar proteins predicted to improve nerve growth. These changes in gene expression may reflect changes in the types of macrophages that populate the lesions in anti-CD11d mAb-treated rats.
Resumo:
AIM To report a rare case of a spinal WHO grade I meningioma extending through intervertebral foramina C7 to D4 with an extensive mediastinal mass and infiltration of the vertebrae, and to discuss the malignant behavior of a tumor classified as benign. METHODS (Clinical Presentation, Histology, and Imaging): A 54-year-old man suffered from increasing lower back pain with gait difficulties, weakness and numbness of the lower extremities, as well as urge incontinence. CT scan of the thorax and MRI scan of the spine revealed a large prevertebral tumor, which extended to the spinal canal and caused compression of the spinal cord at the levels of C7 to D4 leading to myelopathy with hyperintense signal alteration on T2-weighted MRI images. The signal constellation (T1 with and without contrast, T2, TIR) was highly suspicious for infiltration of vertebrae C7 to D5. Somatostatin receptor SPECT/CT with (111)In-DTPA-D: -Phe-1-octreotide detected a somatostatin receptor-positive mediastinal tumor with infiltration of multiple vertebrae, dura, and intervertebral foramina C7-D4, partially with Krenning score >2. Percutaneous biopsies of the mediastinal mass led to histopathological findings of WHO grade I meningioma of meningothelial subtype. RESULTS (Therapy): C7 to D4 laminoplasty was performed, and the intraspinal, extradural part of the tumor was microsurgically removed. Postoperative stereotactic radiation therapy was done using the volumetric modulated arc therapy (VMAT) technique (RapidArc). No PRRNT with (90)Y-DOTA-TOC was done. CONCLUSIONS Due to the rare incidence and complex presentation of this disease not amenable to complete surgical resection, an individualized treatment approach should be worked out interdisciplinarily. The treatment approach should be based not only on histology but also on clinical and imaging findings. Close clinical and radiological follow-up may be mandatory even for benign tumors.
Resumo:
Minimally invasive vertebral augmentation-based techniques have been used for the treatment of spinal fractures (osteoporotic and malignant) for approximately 25 years. In this review, we try to give an overview of the current spectrum of percutaneous augmentation techniques, safety aspects and indications. Crucial factors for success are careful patient selection, proper technique and choice of the ideal cement augmentation option. Most compression fractures present a favourable natural course, with reduction of pain and regainment of mobility after a few days to several weeks, whereas other patients experience a progressive collapse and persisting pain. In this situation, percutaneous cement augmentation is an effective treatment option with regards to pain and disability reduction, improvement of quality of life and ambulatory and pulmonary function.
Resumo:
The outcome of spinal surgery in dogs with absent voluntary motor function and nociception following intervertebral disc (IVD) herniation is highly variable, which likely attests to differences in the severity of spinal cord damage. This retrospective study evaluated the extent to which neurological signs correlated with histologically detected spinal cord damage in 60 dogs that were euthanased because of thoracolumbar IVD herniation. Clinical neurological grades correlated significantly with the extent of white matter damage (P<0.001). However, loss of nociception also occurred in 6/31 (19%) dogs with relatively mild histological changes. The duration of clinical signs, Schiff-Sherrington posture, loss of reflexes and pain on spinal palpation were not significantly associated with the severity of spinal cord damage. Although clinical-pathological correlation was generally good, some clinical signs frequently thought to indicate severe cord injury did not always correlate with the degree of cord damage, suggesting functional rather than structural impairment in some cases.
Resumo:
OBJECTIVE To determine the prevalence of spinal cord compression subsequent to traumatic intervertebral disk (IVD) extrusion in dogs, characterize factors associated with spinal cord compression in dogs with traumatic IVD extrusion, and evaluate the outcomes of dogs with traumatic IVD extrusion with or without spinal cord compression. DESIGN Retrospective case series. ANIMALS 31 dogs with traumatic IVD extrusion. PROCEDURES Medical records and MRI findings were reviewed for dogs with a history of trauma to the spinal region. Dogs were included in the study if a neurologic examination and MRI were performed and there was a description of clinical signs and MRI findings including identification of the spinal cord segment affected by IVD extrusion, presence or absence of spinal cord compression, treatment, and outcome available for review. RESULTS 31 of 50 (62%) dogs had traumatic IVD extrusions without any other detectable vertebral lesions; 9 (29%) and 22 (71%) of those 31 dogs did and did not have spinal cord compression, respectively. Dogs with spinal cord compression were significantly older and more likely to be chondrodystrophic and have evidence of generalized IVD degeneration, compared with dogs without spinal cord compression. The outcome for dogs with spinal cord compression was similar to that for dogs without spinal cord compression. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated traumatic IVD extrusion was common and should be considered as a differential diagnosis for dogs with trauma to the spinal region, and spinal cord compression should be evaluated, especially in older or chondrodystrophic dogs.
Resumo:
BACKGROUND CONTEXT A new device, DensiProbe, has been developed to provide surgeons with intraoperative information about bone strength by measuring the peak breakaway torque. In cases of low bone quality, the treatment can be adapted to the patient's condition, for example, by improving screw-anchorage with augmentation techniques. PURPOSE The objective of this study was to investigate the feasibility of DensiProbe Spine in patients undergoing transpedicular fixation. STUDY DESIGN Prospective feasibility study on consecutive patients. PATIENT SAMPLE Fourteen women and 16 men were included in this study. OUTCOME MEASURES Local and general bone quality. METHODS These consecutive patients scheduled for transpedicular fixation were evaluated for bone mineral density (BMD), which was measured globally by dual-energy X-ray absorptiometry and locally via biopsies using quantitative microcomputed tomography. The breakaway torque force within the vertebral body was assessed intraoperatively via the transpedicular approach with the DensiProbe Spine. The results were correlated with the areal BMD at the lumbar spine and the local volumetric BMD (vBMD) and a subjective impression of bone strength. The feasibility of the method was evaluated, and the clinical and radiological performance was evaluated over a 1-year follow-up. This study was funded by an AO Spine research grant; DensiProbe was developed at the AO Research Institute Davos, Switzerland; the AO Foundation is owner of the intellectual property rights. RESULTS In 30 patients, 69 vertebral levels were examined. The breakaway torque consistently correlated with an experienced surgeon's quantified impression of resistance as well as with vBMD of the same vertebra. Beyond a marginal prolongation of surgery time, no adverse events related to the usage of the device were observed. CONCLUSIONS The intraoperative transpedicular measurement of the peak breakaway torque was technically feasible, safe, and reliably predictive of local vBMD during dorsal spinal instrumentations in a clinical setting. Larger studies are needed to define specific thresholds that indicate a need for the augmentation or instrumentation of additional levels.
Resumo:
Purpose To provide normal values of the cervical spinal canal and spinal cord dimensions in several planes with respect to spinal level, age, sex, and body height. Materials and Methods This study was approved by the institutional review board; all individuals provided signed informed consent. In a prospective multicenter study, two blinded raters independently examined cervical spine magnetic resonance (MR) images of 140 healthy volunteers who were white. The midsagittal diameters and areas of spinal canal and spinal cord, respectively, were measured at the midvertebral levels of C1, C3, and C6. A multivariate general linear model described the influence of sex, body height, age, and spinal level on the measured values. Results There were differences for sex, spinal level, interaction between sex and level, and body height, while age had significant yet limited influence. Normative ranges for the sagittal diameters and areas of spinal canal and spinal cord were defined at C1, C3, and C6 levels for men and women. In addition to a calculation of normative ranges for a specific sex, spinal level, age, and body height data, data for three different height subgroups at 45 years of age were extracted. These results show a range of the spinal canal dimensions at C1 (from 10.7 to 19.7 mm), C3 (from 9.4 to 17.2 mm), and C6 (from 9.2 to 16.8 mm) levels. Conclusion : The dimensions of the cervical spinal canal and cord in healthy individuals are associated with spinal level, sex, age, and height. © RSNA, 2013 Online supplemental material is available for this article.
Resumo:
Body height decreases throughout the day due to fluid loss from the intervertebral disk. This study investigated whether spinal shrinkage was greater during workdays compared with nonwork days, whether daily work stressors were positively related to spinal shrinkage, and whether job control was negatively related to spinal shrinkage. In a consecutive 2-week ambulatory field study, including 39 office employees and 512 days of observation, spinal shrinkage was measured by a stadiometer, and calculated as body height in the morning minus body height in the evening. Physical activity was monitored throughout the 14 days by accelerometry. Daily work stressors, daily job control, biomechanical workload, and recreational activities after work were measured with daily surveys. Multilevel regression analyses showed that spinal disks shrank more during workdays than during nonwork days. After adjustment for sex, age, body weight, smoking status, biomechanical work strain, and time spent on physical and low-effort activities during the day, lower levels of daily job control significantly predicted increased spinal shrinkage. Findings add to knowledge on how work redesign that increases job control may possibly contribute to preserving intervertebral disk function and preventing occupational back pain.
Resumo:
Objective: Perimedullary arteriovenous fistulas (PMAVF) are exceptional spinal vascular malformations and their best therapeutic management remains controversial. Here the authors present their experience with PMAVF to characterize the clinical, neuroimaging and treatment data of patients operated on PMAVF and to analyse both incidence of complications and resurgery in the microsurgical therapy of PMAVF. Method: Fifteen patients (13 men, 2 women, mean age 51 years) with PMAVF identified by selective spinal angiography were microsurgically treated at our institution between 1992 and 2006. The presenting symptoms (duration 3 months to 5 years) were consistent with progressive myelopathy (13) or included isolated pain syndrome (2). Lumbar PMAVF location (6) was predominant followed by the sacral (5) and thoracic (4) site including 6 PMAVF of the filum terminale and 2 PMAVF associated with a glomerular AVM and dural arteriovenous fistula, respectively. Microsurgical PMAVF obliteration and postoperative angiography were routinely performed. All patients were available for follow-up evaluation within 6 months postoperatively. Results: Surgery with complete (12) or almost complete (3) PMAVF occlusion resulted in neurological improvement (10) or stabilization (1), 4 patients deteriorated postoperatively. Whereas no complications occured, a second operation because of residual or recanalized PMAVF was indicated in one case each. Two associated dual spinal vascular malformations could be observed and subsequently obliterated. Conclusions: Microsurgical occlusion of PMAVF appears to be a secure and adequate therapeutic option that prevents progressive neurological deterioration and results in good outcome in the majority of patients. Complications associated with surgery, recurrences and reoperations are infrequent. Therefore, in the authors experience microsurgery is the preferred therapy to treat PMAVF. Despite the rarity of PMAVF the possibility of the coincidence of associated second vascular malformations should be considered.
Resumo:
BACKGROUND Bodily sensations are an important component of corporeal awareness. Spinal cord injury can leave affected body parts insentient and unmoving, leading to specific disturbances in the mental representation of one's own body and the sense of self. OBJECTIVE Here, we explored how illusions induced by multisensory stimulation influence immediate sensory signals and tactile awareness in patients with spinal cord injuries. METHODS The rubber hand illusion paradigm was applied to 2 patients with chronic and complete spinal cord injury of the sixth cervical spine, with severe somatosensory impairments in 2 of 5 fingers. RESULTS Both patients experienced a strong illusion of ownership of the rubber hand during synchronous, but not asynchronous, stroking. They also, spontaneously reported basic tactile sensations in their previously numb fingers. Tactile awareness from seeing the rubber hand was enhanced by progressively increasing the stimulation duration. CONCLUSIONS Multisensory illusions directly and specifically modulate the reemergence of sensory memories and enhance tactile sensation, despite (or as a result of) prior deafferentation. When sensory inputs are lost, and are later illusorily regained, the brain updates a coherent body image even several years after the body has become permanently unable to feel. This particular example of neural plasticity represents a significant opportunity to strengthen the sense of the self and the feelings of embodiment in patients with spinal cord injury.