214 resultados para ice


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Accumulation and delta O-18 data from Alpine ice cores provide information on past temperature and precipitation. However, their correlation with seasonal or annual mean temperature and precipitation at nearby sites is often low. This is partly due to the irregular sampling of the atmosphere by the ice core (i.e. ice cores almost only record precipitation events and not dry periods) and the possible incongruity between annual layers and calendar years. Using daily meteorological data from a nearby station and reanalyses, we replicate the ice core from the Grenzgletscher (Switzerland, 4200m a.s.l.) on a sample-by-sample basis by calculating precipitation-weighted temperature (PWT) over short intervals. Over the last 15 yr of the ice core record, accumulation and delta O-18 variations can be well reproduced on a sub-seasonal scale. This allows a wiggle-matching approach for defining quasi-annual layers, resulting in high correlations between measured quasi-annual delta O-18 and PWT. Further back in time, the agreement deteriorates. Nevertheless, we find significant correlations over the entire length of the record (1938-1993) of ice core delta O-18 with PWT, but not with annual mean temperature. This is due to the low correlations between PWT and annual mean temperature, a characteristic which in ERA-Interim reanalysis is also found for many other continental mid-to-high-latitude regions. The fact that meteorologically very different years can lead to similar combinations of PWT and accumulation poses limitations to the use of delta O-18 from Alpine ice cores for temperature reconstructions. Rather than for reconstructing annual mean temperature, delta O-18 from Alpine ice cores should be used to reconstruct PWT over quasi-annual periods. This variable is reproducible in reanalysis or climate model data and could thus be assimilated into conventional climate models.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Only a few sites in the Alps have produced archaeological finds from melting ice. To date, prehistoric finds from four sites dating from the Neolithic period, the Bronze Age, and the Iron Age have been recovered from small ice patches (Schnidejoch, Lötschenpass, Tisenjoch, and Gemsbichl/Rieserferner). Glaciers, on the other hand, have yielded historic finds and frozen human remains that are not more than a few hundred years old (three glacier mummies from the 16th to the 19th century and military finds from World Wars I and II). Between 2003 and 2010, numerous archaeological finds were recovered from a melting ice patch on the Schnidejoch in the Bernese Alps (Cantons of Berne and Valais, Switzerland). These finds date from the Neolithic period, the Early Bronze Age, the Iron Age, Roman times, and the Middle Ages, spanning a period of 6000 years. The Schnidejoch, at an altitude of 2756 m asl, is a pass in the Wildhorn region of the western Bernese Alps. It has yielded some of the earliest evidence of Neolithic human activity at high altitude in the Alps. The abundant assemblage of finds contains a number of unique artifacts, mainly from organic materials like leather, wood, bark, and fibers. The site clearly proves access to high-mountain areas as early as the 5th millennium BC, and the chronological distribution of the finds indicates that the Schnidejoch pass was used mainly during periods when glaciers were retreating.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The spectacular images of Comet 103P/Hartley 2 recorded by the Medium Resolution Instrument (MRI) and High Resolution Instrument (HRI) on board of the Extrasolar Planet Observation and Deep Impact Extended Investigation (EPOXI) spacecraft, as the Deep Impact extended mission, revealed that its bi-lobed very active nucleus outgasses volatiles heterogeneously. Indeed, CO2 is the primary driver of activity by dragging out chunks of pure ice out of the nucleus from the sub-solar lobe that appear to be the main source of water in Hartley 2's coma by sublimating slowly as they go away from the nucleus. However, water vapor is released by direct sublimation of the nucleus at the waist without any significant amount of either CO2 or icy grains. The coma structure for a comet with such areas of diverse chemistry differs from the usual models where gases are produced in a homogeneous way from the surface. We use the fully kinetic Direct Simulation Monte Carlo model of Tenishev et al. (Tenishev, V.M., Combi, M.R., Davidsson, B. [2008]. Astrophys. J. 685, 659-677; Tenishev, V.M., Combi, M.R., Rubin, M. [2011]. Astrophys. J. 732, 104-120) applied to Comet 103P/Hartley 2 including sublimating icy grains to reproduce the observations made by EPOXI and ground-based measurements. A realistic bi-lobed nucleus with a succession of active areas with different chemistry was included in the model enabling us to study in details the coma of Hartley 2. The different gas production rates from each area were found by fitting the spectra computed using a line-by-line non-LTE radiative transfer model to the HRI observations. The presence of icy grains with long lifetimes, which are pushed anti-sunward by radiation pressure, explains the observed OH asymmetry with enhancement on the night side of the coma.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Glacier highstands since the Last Glacial Maximum are well documented for many regions, but little is known about glacier fluctuations and lowstands during the Holocene. This is because the traces of minimum extents are difficult to identify and at many places are still ice covered, limiting the access to sample material. Here we report a new approach to assess minimal glacier extent, using a 72-m long surface-to-bedrock ice core drilled on Khukh Nuru Uul, a glacier in the Tsambagarav mountain range of the Mongolian Altai (4130 m asl, 48°39.338′N, 90°50.826′E). The small ice cap has low ice temperatures and flat bedrock topography at the drill site. This indicates minimal lateral glacier flow and thereby preserved climate signals. The upper two-thirds of the ice core contain 200 years of climate information with annual resolution, whereas the lower third is subject to strong thinning of the annual layers with a basal ice age of approximately 6000 years before present (BP). We interpret the basal ice age as indicative of ice-free conditions in the Tsambagarav mountain range at 4100 m asl prior to 6000 years BP. This age marks the onset of the Neoglaciation and the end of the Holocene Climate Optimum. The ice-free conditions allow for adjusting the Equilibrium Line Altitude (ELA) and derive the glacier extent in the Mongolian Altai during the Holocene Climate Optimum. Based on the ELA-shift, we conclude that most of the glaciers are not remnants of the Last Glacial Maximum but were formed during the second part of the Holocene. The ice core derived accumulation reconstruction suggests important changes in the precipitation pattern over the last 6000 years. During formation of the glacier, more humid conditions than presently prevailed followed by a long dry period from 5000 years BP until 250 years ago. Present conditions are more humid than during the past millennia. This is consistent with precipitation evolution derived from lake sediment studies in the Altai.