135 resultados para growth hormone deficiency


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on a female who is compound heterozygote for two new point mutations in the CYP19 gene. The allele inherited from her mother presented a base pair deletion (C) occurring at P408 (CCC, exon 9), causing a frameshift that results in a nonsense codon 111 bp (37 aa) further down in the CYP19 gene. The allele inherited from her father showed a point mutation from G-->A at the splicing point (canonical GT to mutational AT) between exon and intron 3. This mutation ignores the splice site and a stop codon 3 bp downstream occurs. Aromatase deficiency was already suspected because of the marked virilization occurring prepartum in the mother, and the diagnosis was confirmed shortly after birth. Extremely low levels of serum estrogens were found in contrast to high levels of androgens. Ultrasonographic follow-up studies revealed persistently enlarged ovaries (19.5-22 mL) during early childhood (2 to 4 yr) which contained numerous large cysts up to 4.8 x 3.7 cm and normal-appearing large tertiary follicles already at the age of 2 yr. In addition, both basal and GnRH-induced FSH levels remained consistently strikingly elevated. Low-dose estradiol (E2) (0.4 mg/day) given for 50 days at the age of 3 6/12 yr resulted in normalization of serum gonadotropin levels, regression of ovarian size, and increase of whole body and lumbar spine (L1-L4) bone mineral density. The FSH concentration and ovarian size returned to pretreatment levels shortly (150 days) after cessation of E2 therapy. Therefore, we recommend that affected females be treated with low-dose E2 in amounts sufficient to result in physiological prepubertal E2 concentrations using an ultrasensitive estrogen assay. However, E2 replacement needs to be adjusted throughout childhood and puberty to ensure normal skeletal maturation and adequate adolescent growth spurt, normal accretion of bone mineral density, and, at the appropriate age, female secondary sex maturation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

OBJECTIVE To evaluate the effects of a 60% vitamin A deficiency (VAD) on the two postnatal stages of lung development: alveolarization and microvascular maturation. Lungs from deficient rats were compared to age-matched controls. STUDY DESIGN Starting at 3 weeks before mating, female rats were maintained under a diet lacking vitamin A. Due to the slow depletion of the vitamin A liver stores the pregnant rats carried to term and delivered pups under mild VAD conditions. Mothers and offspring were then kept under the same diet what resulted in a mean reduction of vitamin A plasma concentration of about 60% vs. controls during the whole experimental period. Pups were sacrificed on days 4, 10 and 21 and their lungs fixed and analyzed by means of a combined morphologic and morphometric investigation at light and electron microscopic levels. RESULTS During the whole experiment, body weights of VAD animals were lower than controls with a significant decrease on day 10. On days 4, 10 and 21 the pulmonary structure was in a comparable gross morphologic state in both groups. Despite this morphologic normality, quantitative alterations in some functional parameters could be detected. On day 4, lung volume and the volume and surface area of air spaces were decreased, while the arithmetic mean barrier thickness and type 2 pneumocyte volume were increased in the VAD group. On day 21, some changes were again manifest mainly consisting in an augmentation of the vascularization and a decrease in interstitial volume in deficient animals. CONCLUSIONS Mild VAD causes no gross disturbances in the postnatal phases of lung development in rats. However, a body weight-related transient retardation of lung maturation was detectable in the first postnatal week. At 3 weeks, the VAD lungs showed a more mature vascular system substantiated by an increase in volume of both capillary volume and the large non-parenchymal vessels. In view of these quantitative alterations, we suspect that mild VAD deregulates the normal phases of body and lung growth, but does not induce serious functional impairments.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Microsomal P450 enzymes, which metabolize drugs and catalyze steroid biosynthesis require electron donation from NADPH via P450 oxidoreductase (POR). POR knockout mice are embryonically lethal, but we found recessive human POR missense mutations causing disordered steroidogenesis and Antley-Bixler syndrome (ABS), a skeletal malformation syndrome featuring craniosynostosis. Dominant mutations in exons 8 and 10 of fibroblast growth factor receptor 2 (FGFR2) cause phenotypically related craniosynostosis syndromes and were reported in patients with ABS and normal steroidogenesis. Sequencing POR and FGFR2 exons in 32 patients with ABS and/or hormonal findings suggesting POR deficiency showed complete genetic segregation of POR and FGFR2 mutations. Fifteen patients carried POR mutations on both alleles, four carried POR mutations on 1 allele, nine carried FGFR2/3 mutations on one allele and no mutation was found in three patients. The 34 affected POR alleles included 10 with A287P, 7 with R457H, 9 other missense mutations and 7 frameshifts. These 11 missense mutations and 10 others identified by database mining were expressed in E. coli, purified to apparent homogeneity, and their catalytic capacities were measured in four assays: reduction of cytochrome c, oxidation of NADPH, and support of the 17alpha-hydroxylase and 17,20 lyase activities of human P450c17. As assessed by Vmax/Km, 17,20 lyase activity provided the best correlation with clinical findings. Modeling human POR on the X-ray crystal structure of rat POR shows that these mutant activities correlate well with their locations in the structure. POR deficiency is a new disease, distinct from the craniosynostosis syndromes caused by FGFR mutations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We investigated the consequences of early malnutrition on milk production by dams and on body weight and structural lung growth of young rats using two models of protein restriction. Dams of the early restriction group were fed an 8% casein diet starting at parturition. Those of the delayed restriction group received a 12% casein diet from lactation d 8-14 and thereafter the 8% diet. After weaning, early restriction and delayed restriction group rats were maintained on low protein until d 49, then refed the control diet (18% casein) up to d 126. Milk was analyzed on d 12. Animals were killed at d 21, 49, and 126 for lung fixation in situ. In this report, we show that protein restriction lowered milk yield to 38% of normal. Milk lipid per gram of dry weight tended to be increased, whereas lactose and protein were significantly decreased. Pups from protein-restricted dams grew less and had lower lung volumes, effects being more serious at d 49. However, specific lung volumes (in milliliters per 100 g body weight) were constantly increased. This means that lung was either less affected than body mass or overdistended due to less connective tissue. After refeeding, both groups showed a remarkable catch-up in growth with restoration of the normal allometric relationship between lung volume and body weight. Thus, even after an early onset of protein restriction to total body, the lung is still capable to substantially recover from growth retardation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Patients with advanced prostate cancer (PC) are usually treated with androgen withdrawal. While this therapy is initially effective, nearly all PCs become refractory to it. As hormone receptors play a crucial role in this process, we constructed a tissue microarray consisting of PC samples from 107 hormone-naïve (HN) and 101 castration-resistant (CR) PC patients and analyzed the androgen receptor (AR) gene copy number and the protein expression profiles of AR, Serin210-phosphorylated AR (pAR(210)), estrogen receptor (ER)β, ERα and the proliferation marker Ki67. The amplification of the AR gene was virtually restricted to CR PC and was significantly associated with increased AR protein expression (P<0.0001) and higher tumor cell proliferation (P=0.001). Strong AR expression was observed in a subgroup of HN PC patients with an adverse prognosis. In contrast, the absence of AR expression in CR PC was significantly associated with a poor overall survival. While pAR(210) was predominantly found in CR PC patients (P<0.0001), pAR(210) positivity was observed in a subgroup of HN PC patients with a poor survival (P<0.05). Epithelial ERα expression was restricted to CR PC cells (9%). ERβ protein expression was found in 38% of both HN and CR PCs, but was elevated in matched CR PC specimens. Similar to pAR(210), the presence of ERβ in HN patients was significantly associated with an adverse prognosis (P<0.005). Our results strongly suggest a major role for pAR(210) and ERβ in HN PC. The expression of these markers might be directly involved in CR tumor growth.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Effects of protein deficiency during the whole period of postnatal development and intensive growth were studied in the rat lung parenchyma. Dams received a low protein diet as follows: early restriction, 8% casein diet from parturition, and delayed restriction, 12% then 8% casein diet from lactation d 8. After weaning (d 21), early restriction and delayed restriction group rats were maintained on the 8% casein diet until d 49, wherefore they were returned to normal food (18% casein) for 11 wk. Lungs were processed for light and electron microscopic morphometry on d 21, 49, and 126. The diffusion capacity of the lung for O2 (DLO2) was also determined from the morphologic parameters. Volume and surface densities of the parenchymal components of malnourished rats did not consistently differ from controls. Because of lower lung volumes, absolute values, including DLO2, were all significantly decreased. Further, although lung volume growth was less impaired than body growth and thus deviated from the normal allometric relationship, most morphometric parameters paralleled body weight changes. Visually, we detected minor morphologic alterations at d 21 and 49, not necessarily reflected by morphometric data. But, importantly, lung parenchyma appeared mature at weaning despite the growth retardation. Normal refeeding resulted in a striking regrowth of the lung parenchyma. Although early restriction rats did not fully catch up in lung volume, most parenchymal parameters and DLO2 were largely restored in both refed groups.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Expansins are members of a multigene family of extracellular proteins, which increase cell wall extensibility in vitro and thus are thought to be involved in cell expansion. The major significance of the presence of this large gene family may be that distinctly expressed genes can independently regulate cell expansion in place and time. Here we report on LeExp9, a new expansin gene from tomato, and compare its expression in the shoot tip with that of LeExp2 and LeExp18. LeExp18 gene is expressed in very young tissues of the tomato shoot apex and the transcript levels are upregulated in the incipient primordium. LeExp2 mRNA accumulated in more mature tissues and transcript levels correlated with cell elongation in the elongation zone. In situ hybridization experiments showed a uniform distribution of LeExp9 mRNA in submeristematic tissues. When gibberellin-deficient mutant tomatoes that lacked elongation of the internodes were treated with gibberellin, the phenotypic rescue was correlated with an increase in LeExp9 and LeExp2, but not LeExp18 levels. We propose that the three expansins define three distinct growing zones in the shoot tip. In the meristem proper, gibberellin-independent LeExp18 mediates the cell expansion that accompanies cell division. In the submeristematic zone, LeExp9 mediates cell expansion at a time that cell division comes to a halt. LeExp9 expression requires gibberellin but the hormone is not normally limiting. Finally, LeExp2 mediates cell elongation in young stem tissue. LeExp2 expression is limited by the available gibberellin. These data suggest that regulation of cell wall extensibility is controlled, at least in part, by differential regulation of expansin genes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Morphogenesis occurs in 3D space over time and is guided by coordinated gene expression programs. Here we use postembryonic development in Arabidopsis plants to investigate the genetic control of growth. We demonstrate that gene expression driving the production of the growth-stimulating hormone gibberellic acid and downstream growth factors is first induced within the radicle tip of the embryo. The center of cell expansion is, however, spatially displaced from the center of gene expression. Because the rapidly growing cells have very different geometry from that of those at the tip, we hypothesized that mechanical factors may contribute to this growth displacement. To this end we developed 3D finite-element method models of growing custom-designed digital embryos at cellular resolution. We used this framework to conceptualize how cell size, shape, and topology influence tissue growth and to explore the interplay of geometrical and genetic inputs into growth distribution. Our simulations showed that mechanical constraints are sufficient to explain the disconnect between the experimentally observed spatiotemporal patterns of gene expression and early postembryonic growth. The center of cell expansion is the position where genetic and mechanical facilitators of growth converge. We have thus uncovered a mechanism whereby 3D cellular geometry helps direct where genetically specified growth takes place.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Despite increasing life expectancy, the age of onset of natural menopause has not significantly changed in recent decades. Thus, women spend about one-third of their lives in an estrogen-deficient state if untreated. There is a need for appropriate treatment of acute symptoms and prevention of the sequelae of chronic estrogen deficiency. International guidelines call for the use of the lowest effective hormone dosage for vasomotor symptom relief, the major indication for menopausal hormone therapy (MHT). In 2011, an oral continuous combined ultra-low-dose MHT was approved in Switzerland. This publication was elaborated by eight national menopause specialists and intends to review the advantages and disadvantages of ultra-low-dose MHT after the first years of its general use in Switzerland. It concludes that, for many women, ultra-low-dose MHT may be sufficient to decrease vasomotor symptoms, but not necessarily to guarantee fracture prevention.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Auxin (IAA) is an important regulator of plant development and root differentiation. Although recent studies indicate that salicylic acid (SA) may also be important in this context by interfering with IAA signaling, comparatively little is known about its impact on the plant’s physiology, metabolism, and growth characteristics. Using carbon-11, a short-lived radioisotope (t 1/2 = 20.4 min) administered as 11CO2 to maize plants (B73), we measured changes in these functions using SA and IAA treatments. IAA application decreased total root biomass, though it increased lateral root growth at the expense of primary root elongation. IAA-mediated inhibition of root growth was correlated with decreased 11CO2 fixation, photosystem II (PSII) efficiency, and total leaf carbon export of 11C-photoassimilates and their allocation belowground. Furthermore, IAA application increased leaf starch content. On the other hand, SA application increased total root biomass, 11CO2 fixation, PSII efficiency, and leaf carbon export of 11C-photoassimilates, but it decreased leaf starch content. IAA and SA induction patterns were also examined after root-herbivore attack by Diabrotica virgifera to place possible hormone crosstalk into a realistic environmental context. We found that 4 days after infestation, IAA was induced in the midzone and root tip, whereas SA was induced only in the upper proximal zone of damaged roots. We conclude that antagonistic crosstalk exists between IAA and SA which can affect the development of maize plants, particularly through alteration of the root system’s architecture, and we propose that the integration of both signals may shape the plant’s response to environmental stress.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Both of the sphingosine kinase (SK) subtypes SK-1 and SK-2 catalyze the production of the bioactive lipid molecule sphingosine 1-phosphate (S1P). However, the subtype-specific cellular functions are largely unknown. In this study, we investigated the cellular function of SK-2 in primary mouse renal mesangial cells (mMC) and embryonic fibroblasts (MEF) from wild-type C57BL/6 or SK-2 knockout (SK2ko) mice. We found that SK2ko cells displayed a significantly higher proliferative and migratory activity when compared to wild-type cells, with concomitant increased cellular activities of the classical extracellular signal regulated kinase (ERK) and PI3K/Akt cascades, and of the small G protein RhoA. Furthermore, we detected an upregulation of SK-1 protein and S1P3 receptor mRNA expression in SK-2ko cells. The MEK inhibitor U0126 and the S1P1/3 receptor antagonist VPC23019 blocked the increased migration of SK-2ko cells. Additionally, S1P3ko mesangial cells showed a reduced proliferative behavior and reduced migration rate upon S1P stimulation, suggesting a crucial involvement of the S1P3 receptor. In summary, our data demonstrate that SK-2 exerts suppressive effects on cell growth and migration in renal mesangial cells and fibroblasts, and that therapeutic targeting of SKs for treating proliferative diseases requires subtype-selective inhibitors.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report a novel homozygous missense mutation in the ubiquinol-cytochrome c reductase synthesis-like (BCS1L) gene in two consanguineous Turkish families associated with deafness, Fanconi syndrome (tubulopathy), microcephaly, mental and growth retardation. All three patients presented with transitory metabolic acidosis in the neonatal period and development of persistent renal de Toni-Debré-Fanconi-type tubulopathy, with subsequent rachitis, short stature, microcephaly, sensorineural hearing impairment, mild mental retardation and liver dysfunction. The novel missense mutation c.142A>G (p.M48V) in BCS1L is located at a highly conserved region associated with sorting to the mitochondria. Biochemical analysis revealed an isolated complex III deficiency in skeletal muscle not detected in fibroblasts. Native polyacrylamide gel electrophoresis (PAGE) revealed normal super complex formation, but a shift in mobility of complex III most likely caused by the absence of the BCS1L-mediated insertion of Rieske Fe/S protein into complex III. These findings expand the phenotypic spectrum of BCS1L mutations, highlight the importance of biochemical analysis of different primary affected tissue and underline that neonatal lactic acidosis with multi-organ involvement may resolve after the newborn period with a relatively spared neurological outcome and survival into adulthood. CONCLUSION Mutation screening for BCS1L should be considered in the differential diagnosis of severe (proximal) tubulopathy in the newborn period. What is Known: • Mutations in BCS1L cause mitochondrial complex III deficiencies. • Phenotypic presentations of defective BCS1L range from Bjornstad to neonatal GRACILE syndrome. What is New: • Description of a novel homozygous mutation in BCS1L with transient neonatal acidosis and persistent de Toni-Debré-Fanconi-type tubulopathy. • The long survival of patients with phenotypic presentation of severe complex III deficiency is uncommon.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

During the last months, the number of reports on Holstein calves suffering from incurable idiopathic diarrhea dramatically increased. Affected calves showed severe hypocholesterolemia and mostly died within days up to a few months after birth. This new autosomal monogenic recessive inherited fat metabolism disorder, termed cholesterol deficiency (CD), is caused by a loss of function mutation of the bovine gene. The objective of the present study was to investigate specific components of lipid metabolism in 6 homozygous for the mutation (CDS) and 6 normal Holstein calves with different genotypes. Independent of sex, CDS had significantly lower plasma concentrations of total cholesterol (TC), free cholesterol (FC), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), very-low-density lipoprotein cholesterol (VLDL-C), triacylglycerides (TAG), and phospholipids (PL) compared with homozygous wild-type calves ( < 0.05). Furthermore, we studied the effect of the genotype on cholesterol metabolism in adult Holstein breeding bulls of Swissgenetics. Among a total of 254 adult males, the homozygous mutant genotype was absent, 36 bulls were heterozygous carriers (CDC), and 218 bulls were homozygous wild-type (CDF). In CDC bulls, plasma concentrations of TC, FC, HDL-C, LDL-C, VLDL-C, TAG, and PL were lower compared with CDF bulls ( < 0.05). The ratios of FC:cholesteryl esters (CE) and FC:TC were higher in CDC bulls compared with CDF bulls, whereas the ratio of CE:TC was lower in CDC bulls compared with CDF bulls ( < 0.01). In conclusion, the CD-associated mutation was shown to affect lipid metabolism in affected Holstein calves and adult breeding bulls. Besides cholesterol, the concentrations of PL, TAG, and lipoproteins also were distinctly reduced in homozygous and heterozygous carriers of the mutation. Beyond malabsorption of dietary lipids, deleterious effects of apolipoprotein B deficiency on hepatic lipid metabolism, steroid biosynthesis, and cell membrane function can be expected, which may result in unspecific symptoms of reduced fertility, growth, and health.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Senescence-associated coordination in amounts of enzymes localized in different cellular compartments were determined in attached leaves of young wheat (Triticum aestivum L. cv. Arina) plants. Senescence was initiated at the time of full leaf elongation based on declines in total RNA and soluble protein. Removal of N from the growth medium just at the time of full leaf elongation enhanced the rate of senescence. Sustained declines in the amount of ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39), and a marked decrease in the rbcS transcripts, just after full leaf elongation indicated that Rubisco synthesis/degradation was very sensitive to the onset of senescence. Rubisco activase amount also declined during senescence but the proportion of rca transcript relative to the total poly A RNA pool increased 3-fold during senescence. Thus, continued synthesis of activase may be required to maintain functional Rubisco throughout senescence. N stress led to declines in the amount of proteins located in the chloroplast, the peroxisome and the cytosol. Transcripts of the Clp protease subunits also declined in response to N stress, indicating that Clp is not a senescence-specific protease. In contrast to the other proteins, mitochondrial NADH-glutamate dehydrogenase (EC 1.4.1.2) was relatively stable during senescence and was not affected by N stress. During natural senescence with adequate plant nitrate supply the amount of nitrite reductase (EC 1.7.7.1) increased, and those of glutamine synthetase (EC 1.4.7.1) and glutamate synthase (EC 6.3.1.2) were stable. These results indicated that N assimilatory capacity can continue or even increase during senescence if the substrate supply is maintained. Differential stabilities of proteins, even within the same cellular compartment, indicate that proteolytic activity during senescence must be highly regulated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Fibroblast growth factor 23 (FGF23) is a bone-derived hormone that regulates phosphate homeostasis. Circulating FGF23 is elevated in chronic kidney disease (CKD) and independently associated with poor renal and cardiovascular outcomes and mortality. Because the study of FGF23 in individuals with normal renal function has received little attention, we examined in a large, population based study of 1128 participants the associations of FGF23 with markers of mineral metabolism and renal function. The median estimated glomerular filtration rate (eGFR) of the cohort was 105 ml/min per 1.73 m2, and the median plasma FGF23 was 78.5 RU/ml. FGF23 increased and plasma 1,25-dihydroxyvitamin D3 decreased significantly below an eGFR threshold of 102 and 99 ml/min per 1.73 m2, respectively. In contrast, plasma parathyroid hormone increased continuously with decreasing eGFR and was first significantly elevated at an eGFR of 126 ml/min per 1.73 m2. On multivariable analysis adjusting for sex, age, body mass index, and GFR, FGF23 was negatively associated with 1,25-dihydroxyvitamin D3, and urinary absolute and fractional calcium excretion but not with serum calcium or parathyroid hormone. We found a positive association of FGF23 with plasma phosphate, but no association with urinary absolute or fractional phosphate excretion and, unexpectedly, a positive association with tubular maximum phosphate reabsorption/GFR. Thus, in the absence of CKD, parathyroid hormone increases earlier than FGF23 when the eGFR decreases. The increase in FGF23 occurs at a higher eGFR threshold than previously reported and is closely associated with a decrease in 1,25-dihydroxyvitamin D3. We speculate that the main demonstrable effect of FGF23 in the setting of preserved renal function is suppression of 1,25-dihydroxyvitamin D3 rather than stimulation of renal phosphate excretion.