147 resultados para angiogenesis inhibitors
Resumo:
BACKGROUND The use of prolyl hydroxylase inhibitors such as l-mimosine (L-MIM) and dimethyloxaloylglycine (DMOG) to improve angiogenesis is a new approach for periodontal regeneration. In addition to exhibiting pro-angiogenic effects, prolyl hydroxylase inhibitors can modulate the plasminogen activator system in cells from non-oral tissues. This study assesses the effect of prolyl hydroxylase inhibitors on plasminogen activation by fibroblasts from the periodontium. METHODS Gingival and periodontal ligament fibroblasts were incubated with L-MIM and DMOG. To investigate whether prolyl hydroxylase inhibitors modulate the net plasminogen activation, kinetic assays were performed with and without interleukin (IL)-1. Moreover, plasminogen activators and the respective inhibitors were analyzed by casein zymography, immune assays, and quantitative polymerase chain reaction. RESULTS The kinetic assay showed that L-MIM and DMOG reduced plasminogen activation under basal and IL-1-stimulated conditions. Casein zymography revealed that the effect of L-MIM involves a decrease in urokinase-type plasminogen activator activity. In agreement with these findings, reduced levels of urokinase-type plasminogen activator and elevated levels of plasminogen activator inhibitor 1 were observed. CONCLUSION L-MIM and DMOG can reduce plasminogen activation by fibroblasts from the gingiva and the periodontal ligament under basal conditions and in the presence of an inflammatory cytokine.
Resumo:
Head and neck cancer constitutes the 6th most common malignancy worldwide and affects the crucial anatomical structures and physiological functions of the upper aerodigestive tract. Classical therapeutic strategies such as surgery and radiotherapy carry substantial toxicity and functional impairment. Moreover, the loco-regional control rates as well as overall survival still need to be improved in subgroups of patients. The scatter-factor/hepatocyte growth factor receptor tyrosine kinase MET is an established effector in the promotion, maintenance and progression of malignant transformation in a wide range of human malignancies, and has been gaining considerable interest in head and neck cancer over the last 15 years. Aberrant MET activation due to overexpression, mutations, tumor-stroma paracrine loops, and cooperative/redundant signaling has been shown to play prominent roles in epithelial-to-mesenchymal transition, angiogenesis, and responses to anti-cancer therapeutic modalities. Accumulating preclinical and translational evidence highly supports the increasing interest of MET as a biomarker for lymph node and distant metastases, as well as a potential marker of stratification for responses to ionizing radiation. The relevance of MET as a therapeutic molecular target in head and neck cancer described in preclinical studies remains largely under-evaluated in clinical trials, and therefore inconclusive. Also in the context of anti-cancer targeted therapy, a large body of preclinical data suggests a central role for MET in treatment resistance towards multiple therapeutic modalities in malignancies of the head and neck region. These findings, as well as the potential use of combination therapies including MET inhibitors in these tumors, need to be further explored.
Resumo:
The MET receptor tyrosine kinase is deregulated primarily via overexpression or point mutations in various human cancers and different strategies for MET inhibition are currently evaluated in clinical trials. We observed by Western blot analysis and by Flow cytometry that MET inhibition by different MET small molecule inhibitors surprisingly increases in a dose-dependent manner total MET levels in treated cells. Mechanistically, this inhibition-related MET accumulation was associated with reduced Tyr1003 phosphorylation and MET physical association with the CBL ubiquitin ligase with concomitant decrease in MET ubiquitination. These data may suggest careful consideration for design of anti-MET clinical protocols.
Resumo:
Matrix metalloproteinases (MMPs, including the membrane-type MMPs (MT-MMPs)), a disintegrin and metalloproteinase (ADAM), and ADAM with thrombospondin motifs belong to the metzincins, a subclass of metalloproteinases that contain a Met residue and a Zn(2+) ion at the catalytic site necessary for enzymatic reaction. MMP proteolytic activity is mainly controlled by their natural tissue inhibitors of metalloproteinase (TIMP). A number of synthetic inhibitors have been developed to control deleterious MMP activity. The roles of MMPs and some of their ECM substrates in CNS physiology and pathology are covered by other chapters of the present volume and will thus not be addressed in depth. This chapter will focus (i) on the endogenous MMP inhibitors in the CNS, (ii) on MMP and TIMP regulations in three large classes of neuropathologic processes (inflammatory, neurodegenerative, and infectious), and (iii) on synthetic inhibitors of MMPs and the perspective of their use in different brain diseases.
Resumo:
Therapeutic angiogenesis is an attractive strategy to treat patients suffering from ischaemic conditions and vascular endothelial growth factor-A (VEGF) is the master regulator of blood vessel growth. However, VEGF can induce either normal or aberrant angiogenesis depending on its dose localized in the microenvironment around each producing cell in vivo and on the balanced stimulation of platelet-derived growth factor-BB (PDGF-BB) signalling, responsible for pericyte recruitment. At the doses required to induce therapeutic benefit, VEGF causes new vascular growth essentially without sprouting, but rather through the alternative process of intussusception, or vascular splitting. In the present article, we briefly review the therapeutic implications of controlling VEGF dose on one hand and pericyte recruitment on the other, as well as the key features of intussusceptive angiogenesis and its regulation.
Resumo:
OBJECTIVE To evaluate the initiation of and response to tumor necrosis factor (TNF) inhibitors for axial spondyloarthritis (axSpA) in private rheumatology practices versus academic centers. METHODS We compared newly initiated TNF inhibition for axSpA in 363 patients enrolled in private practices with 100 patients recruited in 6 university hospitals within the Swiss Clinical Quality Management (SCQM) cohort. RESULTS All patients had been treated with ≥ 1 nonsteroidal antiinflammatory drug and > 70% of patients had a baseline Bath Ankylosing Spondylitis Disease Activity Index (BASDAI) ≥ 4 before anti-TNF agent initiation. The proportion of patients with nonradiographic axSpA (nr-axSpA) treated with TNF inhibitors was higher in hospitals versus private practices (30.4% vs 18.7%, p = 0.02). The burden of disease as assessed by patient-reported outcomes at baseline was slightly higher in the hospital setting. Mean levels (± SD) of the Ankylosing Spondylitis Disease Activity Score were, however, virtually identical in private practices and academic centers (3.4 ± 1.0 vs 3.4 ± 0.9, p = 0.68). An Assessment of SpondyloArthritis international Society (ASAS40) response at 1 year was reached for ankylosing spondylitis in 51.7% in private practices and 52.9% in university hospitals (p = 1.0) and for nr-axSpA in 27.5% versus 25.0%, respectively (p = 1.0). CONCLUSION With the exception of a lower proportion of patients with nr-axSpA newly treated with anti-TNF agents in private practices in comparison to academic centers, adherence to ASAS treatment recommendations for TNF inhibition was equally high, and similar response rates to TNF blockers were achieved in both clinical settings.
Resumo:
3-Hydroxy-3-methylglutaryl-coenzyme A (HMG-CoA) reductase inhibitors are widely used for secondary stroke prevention. Besides their lipid-lowering activity, pleiotropic effects on neuronal survival, angiogenesis, and neurogenesis have been described. In view of these observations, we were interested whether HMG-CoA reductase inhibition in the post-acute stroke phase promotes neurological recovery, peri-lesional, and contralesional neuronal plasticity. We examined effects of the HMG-CoA reductase inhibitor rosuvastatin (0.2 or 2.0 mg/kg/day i.c.v.), administered starting 3 days after 30 min of middle cerebral artery occlusion for 30 days. Here, we show that rosuvastatin treatment significantly increased the grip strength and motor coordination of animals, promoted exploration behavior, and reduced anxiety. It was associated with structural remodeling of peri-lesional brain tissue, reflected by increased neuronal survival, enhanced capillary density, and reduced striatal and corpus callosum atrophy. Increased sprouting of contralesional pyramidal tract fibers crossing the midline in order to innervate the ipsilesional red nucleus was noticed in rosuvastatin compared with vehicle-treated mice, as shown by anterograde tract tracing experiments. Western blot analysis revealed that the abundance of HMG-CoA reductase was increased in the contralesional hemisphere at 14 and 28 days post-ischemia. Our data support the idea that HMG-CoA reductase inhibition promotes brain remodeling and plasticity far beyond the acute stroke phase, resulting in neurological recovery.
Resumo:
Novel insights into intra-cellular signalling involved in pemphigus vulgaris (PV), an autoimmune blistering disease of skin and mucous membranes, are now revealing new therapeutic approaches such as the chemical inhibition of PV-associated signals in conjunction with standard immunosuppressive therapy. However, extensive inhibition of signalling molecules that are required for normal tissue function and integrity may hamper this approach. Using a neonatal PV mouse model, we demonstrate that epidermal blistering can be prevented in a dose-dependent manner by clinically approved EGFR inhibitors erlotinib and lapatinib, but only up to approximately 50% of normal EGFR activity. At lower EGFR activity, blisters again aggravated and were highly exacerbated in mice with a conditional deletion of EGFR. Statistical analysis of the relation between EGFR activity and the extent of skin blistering revealed the best fit with a non-linear, V-shaped curve with a median break point at 52% EGFR activity (P = 0.0005). Moreover, lapatinib (a dual EGFR/ErbB2 inhibitor) but not erlotinib significantly reduced blistering in the oral cavity, suggesting that signalling mechanisms differ between PV predilection sites. Our results demonstrate that future clinical trials evaluating EGFR/ErbB2 inhibitors in PV patients must select treatment doses that retain a specific level of signal molecule activity. These findings may also be of relevance for cancer patients treated with EGFR inhibitors, for whom skin lesions due to extensive EGFR inhibition represent a major threat.
Resumo:
The achievement rate of recommended low-density lipoprotein cholesterol (LDL-C) targets of < 1.8 mmol/l for secondary prevention in very high risk patients is difficult. Observational studies reported that loss of function mutation of the PCS9 was associated with LDL-C decrease level and reduction of cardiovascular events. Monoclonal antibodies to PCSK9 (REGN727 and AMG 145, PSCK9 inhibitors) have been tested in clinical studies of phase I and II and showed LDL-C level reduction of 60-70% compared to placebo. This approach appears safe and well-tolerated. The PCSK9 inhibitors are now tested in large phase III clinical studies to assess the long-term safety and efficacy of this new promising approach.
Resumo:
Besides the suggested role of a putative endocannabinoid membrane transporter mediating the cellular uptake of the endocannabinoid anandamide (AEA), this process is intrinsically coupled to AEA degradation by the fatty acid amide hydrolase (FAAH). Differential blockage of each mechanism is possible using specific small-molecule inhibitors. Starting from the natural product-derived 2E,4E-dodecadiene scaffold previously shown to interact with the endocannabinoid system (ECS), a series of diverse N-alkylcarbamates were prepared with the aim of generating novel ECS modulators. While being inactive at cannabinoid receptors and monoacylglycerol lipase, these N-alkylcarbamates showed potent to ultrapotent picomolar FAAH inhibition in U937 cells. Overall, a highly significant correlation (Spearman's rho=0.91) was found between the inhibition of FAAH and AEA cellular uptake among 54 compounds. Accordingly, in HMC-1 cells lacking FAAH expression the effect on AEA cellular uptake was dramatically reduced. Unexpectedly, 3-(4,5-dihydrothiazol-2-yl)phenyl carbamates and the 3-(1,2,3-thiadiazol-4-yl)phenyl carbamates WOBE490, WOBE491 and WOBE492 showed a potentiation of cellular AEA uptake inhibition in U937 cells, resulting in unprecedented femtomolar (hyperpotent) IC50 values. Potential methodological issues and the role of cellular accumulation of selected probes were investigated. It is shown that albumin impacts the potency of specific N-alkylcarbamates and, more importantly, that accumulation of FAAH inhibitors can significantly increase their effect on cellular AEA uptake. Taken together, this series of N-alkylcarbamates shows a FAAH-dependent inhibition of cellular AEA uptake, which can be strongly potentiated using specific head group modifications. These findings provide a rational basis for the development of hyperpotent AEA uptake inhibitors mediated by ultrapotent FAAH inhibition.
Resumo:
Notch signaling is important in angiogenesis during embryonic development. However, the embryonic lethal phenotypes of knock-out and transgenic mice have precluded studies of the role of Notch post-natally. To develop a mouse model that would bypass the embryonic lethal phenotype and investigate the possible role of Notch signaling in adult vessel growth, we developed transgenic mice with Cre-conditional expression of the constitutively active intracellular domain of Notch1 (IC-Notch1). Double transgenic IC-Notch1/Tie2-Cre embryos with endothelial specific IC-Notch1 expression died at embryonic day 9.5. They displayed collapsed and leaky blood vessels and defects in angiogenesis development. A tetracycline-inducible system was used to express Cre recombinase postnatally in endothelial cells. In adult mice, IC-Notch1 expression inhibited bFGF-induced neovascularization and female mice lacked mature ovarian follicles, which may reflect the block in bFGF-induced angiogenesis required for follicle growth. Our results demonstrate that Notch signaling is important for both embryonic and adult angiogenesis and indicate that the Notch signaling pathway may be a useful target for angiogenic therapies.
Resumo:
BACKGROUND AND AIMS: Selective serotonin reuptake inhibitors (SSRIs) are commonly prescribed for patients with chronic hepatitis C virus (HCV) infection. Research suggests that serotonin promotes the development and growth of hepatocellular carcinoma (HCC). We tested the hypothesis whether exposure to SSRIs is associated with an increased risk of HCC in HCV patients. METHOD: Patients who entered the United States Veterans Affairs (VA) Hepatitis C Clinical Case Registry in 2000 to 2009 were analyzed. During the 8 years of follow-up, 36,192 patients filled at least 1 SSRI prescription. Cases of HCC were identified by diagnosis codes (ICD-9 155.0). Multivariable Cox regression analyses estimated adjusted HCC hazard ratios (HRs) for SSRI-exposed versus SSRI-unexposed subjects and categories of average SSRI doses. RESULTS: The annual incidence of HCC in the VA registry cohort of 109,736 patients was 0.5% and significantly greater in the 8% with cirrhosis at baseline (HR = 5.2; 95% CI, 4.7-5.7). There was no evidence for significant interactions between the effect of SSRI-exposure and cirrhosis. Baseline characteristics of the exposed (n = 36,192) and unexposed (n = 73,544) subjects were similar. The median (interquartile range [IQR]) follow-up period after SSRI-exposure began was 44 (20-74) months with 18 (3-49) months between the first and last prescription. The median average SSRI dose during follow-up expressed as a fraction of initial recommended doses for depression was 0.94 (IQR, 0.5 to 1.3). The risk of HCC was not significantly increased after SSRI exposure (HR = 0.96; 95% CI, 0.87-1.05) or with increasing SSRI doses. CONCLUSIONS: Analysis of a large cohort of HCV patients did not support the hypothesis that SSRIs increase the risk of developing HCC.
Resumo:
No treatment is available for patients affected by the recessively inherited, progressive muscular dystrophies caused by a deficiency in the muscle membrane repair protein dysferlin. A marked reduction in dysferlin in patients harboring missense mutations in at least one of the two pathogenic DYSF alleles encoding dysferlin implies that dysferlin is degraded by the cell's quality control machinery. In vitro evidence suggests that missense mutated dysferlin might be functional if salvaged from degradation by the proteasome. We treated three patients with muscular dystrophy due to a homozygous Arg555Trp mutation in dysferlin with the proteasome inhibitor bortezomib and monitored dysferlin expression in monocytes and in skeletal muscle by repeated percutaneous muscle biopsy. Expression of missense mutated dysferlin in the skeletal muscle and monocytes of the three patients increased markedly, and dysferlin was correctly localized to the sarcolemma of muscle fibers on histological sections. Salvaged missense mutated dysferlin was functional in a membrane resealing assay in patient-derived muscle cells treated with three different proteasome inhibitors. We conclude that interference with the proteasomal system increases expression of missense mutated dysferlin, suggesting that this therapeutic strategy may benefit patients with dysferlinopathies and possibly other genetic diseases.
Resumo:
The role for the novel treatment approach of sodium-glucose cotransporter-2 (SGLT-2) in type 2 diabetes is increasing. Structured self-monitoring of blood glucose (SMBG), based on a less intensive and a more intensive scheme, may contribute to an optimization of SGLT-2 inhibitor based treatment. The current expert recommendation suggests individualized approaches of SMBG, using simple and clinically applicable schemes. Potential benefits of SMBG in SGLT-2 inhibitor based treatment approaches are early assessment of treatment success or failure, timely modification of treatment, detection of hypoglycemic episodes, assessment of glucose excursions, and support of diabetes management and education. The length and frequency of SMBG should depend on the clinical setting and the quality of metabolic control.